لیکا چیست؟

لیکا چیست؟

یکی از روش های تهیه دانه های سبک استفاده از کوره گردان است .وقتی برخی از انواع رس با دانه هایی به ریزی صفر تا دو میکرون در دمای بالاتر از 1000 درجه سانتیگراد در این کوره ها حرارت می بینند ،گازهای ایجاد شده در داخل آنها منبسط می شوند و هزاران سلول هوای ریز تشکیل می دهند .با سرد شدن مواد ،این سلول ها باقی می مانند و سطح آن ها سخت می شود .

مهمترین ویژگی های لیکا عبارتند از :

وزن کم ،عایق حرارت ،عایق صوت ، باز دارنده نفوذ رطوبت، مقامت در برابر یخ زدگی ،تراکم ناپذیری تحت فشار ثابت و دائمی ،فساد ناپذیری ،مقاومت در برابر آتش و PH نزدیک به نرمال .وزن کم این دانه ها و در نتیجه هزینه حمل پایین آن باعث شده است تا از لیکا در پر کردن فضاهای خالی استفاده شود .در کاربرد های خاص نظیر زیرسازی ساختمان و تسطیح و شیب بندی بام ،خواص عایق حرارتی و دوام لیکا مشخصات فنی مناسبی برای آن فراهم می کند .در راهسازی نیز از تراکم ناپذیری لیکا برای کنترل نشست پلاستیک بستر های سست استفاده می شود .همچنین جذب آب مناسب ،تخلخل و دوام لیکا آن را برای کشاورزی بدون خاک مناسب ساخته است . همین خواص باعث شده است تا در تصفیه فاضلاب های خانگی از فیلتر های ساخته شده از لیکا استفاده شود.

ویژگی های بتن لیکا

خواص لیکا باعث شده است تا در بتن سبک لیکا کاربردهای فراوانی داشته باشد . مهمترین ویژگی های بتن لیکا عبارتند از ،وزن کم ،سهولت حمل و نقل ،بهره وری بالا هنگام اجرا ،سطح مناسب برای اندود کاری ،مقاومت و باربری در شرایط خاص ،عایق حرارت ،مقاومت در برابر آتش ،عایق صدا مقاومت در برابر یخ زدگی ،بازدارندگی در برابر نفوذ رطوبت و دوام در برابر مواد آهکی .متناسب با وزن و مقاومت مورد نظر از بتن سبک لیکا به عنوان پر کننده ،عایق و یا باربر استفاده می شود . بتن لیکا می تواند درجا ریخته شود و یا به صورت بلوک ،اجزای ساختمانی و سایر قطعات پیش ساخته به کار رود . در هر مورد متناسب با کاربرد و روش اجرا از دانه بندی های مناسب لیکا استفاده می شود .بتن های پرکننده و عایق اغلب در پی سازی و زیر سازی ساختمان ،شیب بندی کف و بام ،بلوک ها یا اجزای دیوارهای جداکننده و محیطی غیر باربر به کار می روند .در حالی که از بتن های سبک سازه ای – که البته عایق نیز خواهند بود – در ساخت اجزای مقاوم نظیر بلوک های باربر ،پانل های دیواری و سقفی مسلح و نیز اسکلت بتن مسلح ساختمان ها استفاده می شود .قابل توجه است که به دلیل الزامات مقاومت و دانه بندی ،تنها با استفاده از دانه های لیکا می توان در ایران بتن سبک سازه ای ساخت .

اندازه

کاربرد

(لیکای درشت )بادامی 10-20mm

پی ،پرکننده سبک،تولید بلوک کف ،عایق سازی کف ،سقف عایق سازی ابنیه تسطیح بام ،زیر سازی ساختمان ،زهکشی

(لیکای متوسط)نخودی 3-10mm

تولید بتن سبک لیکا ،تولید بلوک ،دال و اجزای ساختمانی ،زیر سازی ساختمان

لیکاری ریز و بسیار ریز 0-3mm

تولید بلوک ،دال و اجزای ساختمانی تولید بتن سبک ،تولید اندود و ملات لیکا

جدول کاربردهای لیکا بر حسب اندازه دانه ها

 

منبع : ماهنامه پیام ساختمان و تاسیسات شماره 18

محسن سورگي ، www.hamkelasy.com

زهکشی...

زهکشی

آب جاری یا آبی که از چشمه‌ها خارج می‌شود، نباید از روی یک ناحیه ناپایدار حرکت کند. وجود آب در سطح دامنه ، علاوه بر نقش فرسایشی ، به راحتی می‌تواند به داخل دامنه نفوذ کرده و به سرعت بر ناپایداری آن بیافزاید. دور نمودن آب از سطح دامنه و جلوگیری از نفوذ آن ، مخصوصا در مورد دامنه‌هایی که بطور بالقوه ناپایدارند، از مهمترین روشهای مهندسی دستیابی به پایداری است.

انواع روکشهای زهکشی آبهای سطحی

شبکه زهکشی بسطی

برای آن که آب به داخل دامنه نفوذ نکند باید ترتیبی داد تا هرچه زودتر سطح دامنه را ترک کند.احداث آبروهای مناسب در سطح دامنه ، یا در روی پلکانها ، یکی از مهمترین تمهیدات در این مورد است. این آبروها باید ضمن دارا بودن گنجایش و شیب کافی ، بسترشان نیز غیر قابل نفوذ باشد. برای جلوگیری از تخریب و پر شدن این جویها در طول زمان ، می‌توان آنها را با قطعات سنگ پر نمود.

این روش در مورد دامنه‌های خاکی یا دامنه‌های متشکل از سنگهای تجزیه شده ، مفید واقع می‌شود و می‌تواند علاوه بر پیشگیری ، در مراحل اولیه حرکت دامنه نیز نقش ترمیمی داشته باشد. نقش مهم دیگر شبکه زهکشی سطحی جلوگیری از فرسایش سطح دامنه توسط آبهای جاری است.

مسدود کردن شکافها

ترکها و شکافهای سطحی محلهای مناسبی را برای نفوذ آب به داخل دامنه فراهم می‌کند. وجود این شکافها ، مخصوصا در مراحل آغازین توسعه یک ناپایداری جدید ، مشکل آفرین تر می‌شود. پر کردن این شکافها توسط مواد غیر قابل نفوذی مثل رس ، بتن یا مواد نفتی می‌تواند تا حدود زیادی از انباشته شدن آب و نفوذ آن به داخل دامنه جلوگیری کند. این روش هم در مورد دامنه‌های خاکی و هم سنگی قابل اجراست و می‌تواند هم در پیشگیری بکار رود و هم در مراحل اولیه ایجاد یک زمین لغره ، پیشرفت آن را کند یا متوقف نماید.

غیر قابل نفوذ کردن بخش دامنه

یکی از رایج ترین روشهای غیر قابل نفوذ کردن سطح زمین ، پاشیدن مواد نفتی (مالج) به سطح دامنه است. مالج به انواعی از مواد نفتی سنگین مایع اطلاق می‌شود که معمولا جزء محصولات زاید پالایشگاه یا کارخانه‌های پتروشیمی است. این روش ضمن جلوگیری از نفوذ آب به داخل دامنه ، با چسباندن ذرات خاک به یکدیگر ، سطح دامنه را در برابر آثار فرسایشی باد و تا حدی آب جاری محفوظ نگاه می‌دارد.

انواع روشهای زهکشی آبهای داخل دامنه

با وجود کوششی که برای جلوگیری از نفوذ آب به داخل دامنه صورت می‌گیرد باز هم ممکن است قسمتی از آبها از سطح دامنه نفوذ از محلی دورتر توسط آب زیرزمینی به داخل دامنه حمل شود. این آبها قبل از هر چیز با افزودن به وزن نیروهای رانشی را زیاد می‌کنند.

زهکشی ثقلی افقی

ایجاد زهکشهای تقریبا افقی می‌تواند نقش موثری در کاهش فشار آب داخل دامنه‌های سنگی و خاکی داشته باشد. از این رو می‌توان از این روش هم برای پیشگیری از حرکت و هم جلوگیری از تحرک یک زمین لغزه در حال تشکیل استفاده کرد. به این منظور در بخشهای پایینی دامنه افقی ، با شیب ناچیزی به سمت خارج برای ایجاد جریان ثقلی آب، حفر می‌شود.

گالریهای زهکش

حفر نقب یا گالریهای زهکش در دامنه‌های سنگی و خاکی ، مخصوصا در جاهایی که زهکشی عمیق بخشهای داخلی دامنه مورد نظر است، مفید واقع می‌شود. چنین گالریهایی می‌توانند هم نقش پیش گیرنده داشته و هم در مراحل اولیه حرکت دامنه جهت جلوگیری از حرکات بیشتر آن بکار روند. کارایی گالریهای زهکش را می‌توان با حفر گمانه‌های شعاعی از داخل گالری افزایش داد.

زهکش ثقلی قایم

این نوع زهکشی بیش از همه برای تخلیه آب سفره‌های معلق که بر روی یک بخش غیر قابل نفوذ تشکیل شده و در زیر آن لایه‌های نفوذپذیر و بازکشی آزاد وجود دارد، بکار برده می‌شود.

پمپاژ

حفر چاههای عمیق و پمپاژ آنها می‌تواند بطور موقت در بهبود وضعیت دامنه ناپایدار موثر باشد. این روش عمدتا در مورد دامنه‌های سنگی بکار می‌رود.

زهکشهای فشار شکن

حفر چاه ، چاهک یا خندق (تراشه) در پای دامنه ، برای جلوگیری از افزایش بیش از حد فشار آب و بالا راندگیهای ناشی از آن در بخشهای مجاور پای دامنه ، اغلب مفید واقع می‌شود. این روش منحصرا در مورد دامنه‌های خاکی و معمولا در مجاورت دامنه پایاب سدهای خاکی ایجاد می‌شود.

خندق در بالای خاکریز

این روش ، در مورد دامنه‌های خاکی حفاری شده و یا خاکریزها ، مخصوصا خاکریزهایی که در دامنه ایجاد می‌شود، به کارگرفته می‌شود و علاوه بر پیشگیری از تفرش می‌تواند در مراحل اولیه ناپایداری نقش ترمیمی نیز داشته باشد.

زهکش ورقه‌ای

این روش ، همان گونه که از نام آن پیداست، به صورت یک لایه زهکش عمل می‌کند. در خاکریزها ، مخصوصا خاکریزهایی که در دامنه ایجاد می‌شود، وجود لایه‌ای از مواد نفوذپذیر در زیر خاکریز ، ضمن زهکشی آبهای محلی دامنه و داخل خاکریز ، از افزایش بیش از حد فشار آب در خاکریز ، جلوگیری به عمل می‌آورد.

الکترواسمز

این روش عمدتا در دامنه‌های خاکی که از لای درست شده باشند بکار گرفته می‌شود و ضمن تسهیل تخلیه آب بر مقاومت خاک می‌افزاید. به این منظور الکترودهایی را در عمقی که مایلیم آب آن تخلیه شود، قرار می‌دهیم و جریان مستقیم به آنها وصل می‌کنیم. جریان باعث می‌گردد که آب بین ذره‌ای از قطب مثبت به سمت قطب منفی حرکت کرده و در آنجا توسط پمپاژ به خارج هدایت شود.

مواد شیمیایی

مواد شمیایی عمدتا در مورد دامنه‌های خاکی رسی بکار گرفته شده و وظیفه اصلی آنها بالا بردن مقاومت رسوبهاست. این روش می‌تواند به عنوان پیشگیری ، یا در مراحل اولیه ناپایداری ، به منظور تصحیح و ترمیم بکار رود.

مقاله ازمحسن سورگی ، برگرفته ازسایت  www.Hamkelasy.com  

دستگاه پرس اتوماتيكي تولید موزائیک

دستگاه پرس اتوماتيكي براي توليد انواع موزائيك از نظر شكل و ابعاد هندسي ، طرح و مدلهاي مورد نياز صنعت ساختمان طراحی و تولید شده است.

پرس اتوماتیک

دستگاه پرس اتوماتيكي براي توليد انواع موزائيك از نظر شكل و ابعاد هندسي ، طرح و مدلهاي مورد نياز صنعت ساختمان طراحی و تولید شده است.

ويژه گيهاي دستگاه

•     تولید انواع موزائیک د ابعاد مختلف و اشکال گوناگون

•     کاربرد ساده و بدون نیاز به نیروی ماهر و متخصص

•     بالا بردن قابلیتهای دستگاه و نیاز به نیروی انسانی کمتر با افزودن مجموعه های طراحی شده امکان پذیر می باشد

•     سادگی سرویس و نگهداری این دستگاه وعدم نیاز به نیروی متخصص و ماهر

•     اين دستگاه هيچ گونه مشابه اي در داخل يا خارج از کشور ندارد

•      فراهم کردن بستر مناسب جهت توليد انبوه موزائيک

•      داراي ضمانت نامه همراه دستگاه

قابليت هاي دستگاه پرس براي کاهش هزينه هاي توليد

o    كيفيت واستحكام بالاي موزائيك توليد شده به علت روش توليد و تناژ بالاي پرس

o     رانـدمـان و ســرعت توليـد بـالا بـه علـت امـكــان كـار 24 سـاعـته بـا ايـن دســتگاه

o     افزايش صافي سطح و پرداخت نماي موزائيك در مقايسه با موزائيكهاي توليد شده به روش سنتي

o     كاهش ميزان برق مصرفي نسبت به حجم محصول توليدي

o     كاهش نيروي انساني با توجه به کم شدن نيروي کار مهاجر و کمک به توليد کنندگان صنعت موزائيک کشور

o     صادرات محصولات توليد شده به علت کيفيت برتر نماي موزائيک

o    فضــاي ابــعادي كــم دســتگاه جهــت نـصب و راه انــدازي

o     همگن بودن دانه بندي موزائيک به علت ويبره

o     يـکـنـواختـي ضـخـامـت مـوزائيک هـاي تـوليدي

جهت مشاده محصولات پرس اتوماتیک به سایت badihico.com  مراجعه کنید.

 

مقالات علمی

نقش بتن سبك هوادار(فوم بتن) دركاهش مصرف سوخت در اجزاي مختلف ساختمان

وجود بلاياي طبيعي مانند زمين لرزه، آتش سوزي، پايان انرژي ارزان، بشر را وادار به  ساختن مسكني كه داراي خصوصيات ضدآتش، ضدپوسيدگي و حشرات، عدم جذب رطوبت، جاذب صوت، عايق حرارت، مقاوم در برابر يخ زدگي، راحت و مدرن با عمر قرن ها نه دهه ها باشد، نمود و اين نيت با شناسائي بتن سبك هوادار (فوم بتن) به واقعيت پيوسته است.

پخش هواي فشرده شده به شكل حبابهاي كوچك، همگن و يكنواخت در داخل بتن هوادار و وجود مزاياي مختلف در اين محصول،‌ باعث توسعه استفاده از آن در صنعت ساختمان گرديده و به لحاظ بي مانندي در معماري، تنوع اختلاط ، خصوصيات شيميائي و مهندسي سازه و تكنولوژي اجرا، مقدار بيشتري از استانداردهاي مصالح ساختماني موردنظر در سطح دنيا را به خود اختصاص داده است. در بررسي عايق بندي حرارتي بتن سبك هوادار دو سيستم :

قطعات پيش ساخته و   ب-  پركننده جدارهاي خارجي، مورد توجه قرار مي گيرد.

       قطعات پيش ساخته با بكارگيري در جدارهاي خارجي ساختمان،‌ عايق بندي حرارتي را انجام و در تعيين ميزان هزينه ناشي از اتلاف حرارتي از يك مترمربع ديوارهاي ساخته شده با مصالح مختلف در بازار ايران به نتيجه زير مي رسيم :

 

نوع ديوار

ضخامت (cm)

ضريب انتقال حرارت (k)

مقاومت حرارتي

®

هزينه اتلاف

(x)

آجر فشاري توپر

20

75/5

174/0

280ر181ر1

بلوك سفالي

20

95/1

513/0

608ر400

بلوك سيماني

20

25/6

16/0

000ر284ر1

بلوك بتني سبك هوادار

20

75/0

33/0

080ر154

 

    بعنوان پركننده در سطوح افق (پشت بام)، عايق بندي حرارتي در پشت بام ساختمانها را انجام و در داخل بلوكهاي ديواري معمولي، عايق بندي حرارتي را در ساختمانهاي روستايي و ويلايي و ساختمانهاي كم طبقه انجام ميدهد.

   مهندس ميراصغر هاشمي رنجبر

 

 

امكان سنجي سيستم قاب سبك فلزي در صنعت ساختمان LSF

نياز شديد جامعه به مسكن اين واقعيت را آشكار كرده است كه استفاده از سيستم سنتي در امر ساخت و ساز جوابگوي نياز جامعه نخواهد بود. لذا استفاده از سيستم ساختماني با پتانسيل توليد صنعتي و پيش ساخته پاسخگوي نيازهاي كمي و كيفي كشور را ميتواند برآورده كند. يكي از اينگونه سيستم ها، سيستم قاب سبك فلزي  LSF ميباشد كه نه تنها امكان توليد صنعتي آن وجود دارد، بلكه سبك بودن سيستم باعث كاهش نيروهاي اينرسي در هنگام زمين لرزه خواهد بود و در نتيجه آسيب پذيري تحت زمين لرزه هاي آتي را كمتر خواهد كرد.

ساخت ساختمانها با اين سيستم از سال 1990 در كشورهايي مثل انگلستان، امريكا، استراليا و ژاپن جهت جايگزيني با سيستمهاي چوبي، آجري و بلوكي شروع شد و ارزان بودن سيستم نسبت به ديگر سيستمهاي رايج در كشورهاي فوق الذكر باعث رشد سريع سيستم نيز گشته است.

عناصر تشكيل دهنده سيستم، Stud ها همراه با عناصر پوششي كه براي ديوارهاي داخلي از گچ برگ و نصب عايق از پشم شيشه و يا لايه هاي پلي استايرن ميباشد كه از تركيب موارد فوق ميتوان به عنوان عناصر سازه اي و يا غيرسازه اي استفاده نمود. اتصالات رايج بين عناصر بوسيله پيچ و مهره ميباشد. گرچه در شرايط خاصي ميتوان از اتصال پرچ و جوش نيز استفاده كرد. ساختمانهاي ساخته شده رايج از اين سيستم بصورت دوطبقه الي چهارطبقه بوده است ولي استفاده از اين سيستم جهت ساختمانهاي بلندمرتبه نيز امكان پذير ميباشد.

محمدحسن فلاح ،  اصغر وطني اسكويي

 

 

 

حفاظت از سازه ها به وسيله پوششهاي ضد حريق

ايمني دربرابر آتش يكي از مسائل مهم در فرآيند طراحي و اجراي ساختمان است. ايمني ساختمان در برابر آتش داراي دو هدف اصلي ايمني جاني و ايمني مالي ميباشد. بسياري از اوقات فرض ميشود كه ايمني جاني با پيش بيني صحيح راههاي فرار و دوركردن دود از ساكنين ساختمان، و ايمني مالي با كاهش حرارت و مقاوم سازي اجزاي ساختمان در برابر حريق حاصل ميگردد. ولي در واقعيت بسياري از روشهايي كه اتخاذ ميشود، به نوعي برآورنده هر دو هدف ايمني جاني و ايمني مالي بوده و مرز مشخصي بين آنها نمي توان تعيين كرد.

از روشهاي مهم ايمني در برابر آتش ، مقاوم سازي اجزاي ساختماني در برابر حريق است. مقاوم سازي در اصل به اين معناست كه پايداري سازه اي ساختمان در برابر حريق حتي الامكان حفظ شده و از گسترش حريق به فضاها يا ساختمانهاي مجاور تا حد امكان جلوگيري گردد. به اين منظور لازم است تا انتخاب اجزاي ساختماني متناسب با كاربري و ابعاد ساختمان به دقت صورت گرفته و در موارد لازم عضو ساختماني را به وسيله پوششهاي ضدحريق، محافظت نمود. اين موضوع بخصوص براي اجزاي سازه اي صدق مي نمايد  پوششهاي ضد حريق را ميتوان در كل به دو دسته كندسوزكننده و مقاوم حريق تقسيم نمود. پوششهاي كندسوزكننده، زمان اشتعال مصالح را به تاخير انداخته و درعين حال پيشروي شعله برروي آنها را كند مي نمايند. اين موضوع براي نازك كاريها و دكوراسيون ساختمان بسيار مهم است. ازطرف ديگر پوششهاي مقاوم حريق باعث افزايش مقاومت جزء ساختماني در برابر آتش شده و عمدتا“ برروي اجزاي سازه اي مورد استفاده قرار مي گيرند.

سعيد بختياري

 

 

مزاياي استفاده از تركيبات سيليكوني در صنايع ساختماني

رطوبت همواره مهمترين عامل آسيب رساني به ساختمانهاي قديمي و نوساز بوده است، چرا كه آب بستر مناسبي براي انتقال ميكروارگانيسم ها به قلب بنا مي باشد جايي كه مي توانند براحتي ويراني و انهدام به وجود آورند. اما مواد موثري بر عليه اين پوسيدگي و زوال وجود دارند. البته هدف ما در معرفي اين مواد صرفا“ نشان دادن راههاي عملي براي جلوگيري از اين زوال نمي باشد. بلكه همچنين مي خواهيم حس مسئوليت ارزشمندي براي حفظ بناها (قديمي و جديد) ايجاد نمائيم . چراكه بناها يكي از بزرگترين تجليهاي نياز بشر به تداوم و پايداري ميباشند.همچنين هدف ما ايجاد حس مبارزه برعليه زوال چه از لحاظ مالي و چه از لحاظ فرهنگي مي باشد. منظور از زوال مالي استهلاك ساختمانها بوده و استهلاك فرهنگي يعني جايي كه ما با غفلت خود اجازه ميدهيم كه بناهاي تاريخ با ارزشمان در طول ساليان تخريب گردند.

دراين راستا از بهترين مواد مورد استفاده براي مبارزه با اين استهلاك تركيبات سيليكوني مي باشند. تركيبات دافع آب پايه سيليكوني بطور دقيق مهمترين محافظت را در برابر رطوبت و پوسيدگيهاي ناشي از آن ايجاد نموده و اين كار را به صورتي كاملا“ طبيعي انجام ميدهند. دقيقا“ مانند عمل پوست كه به عرق بدن اجازه خروج ميدهد. ولي مانع از نفوذ آب به داخل بدن ميگردد (عبور انتخابي). سيليكونها نيز به همين ترتيب مانع نفوذ آب باران مي شوند و درعين حال به سطح اجازه تنفس ميدهند. يعني ساختمان شبكه اي رزين سيليكوني مانع از عبور جريان آب شده و درعين حال بخار آب را حبس ننموده و به آن اجازه خروج ميدهد. شيميدانها سيليكونها را به عنوان تركيبات اورگانوسيليكون طبقه بندي مي نمايند. موادي كه هم ساختمان آلي و هم ساختمان معدني دارند. درتركيبات سيليكوني دافع آب خاصيت معدني بيشتر از خاصيت آلي شاخص مي باشد. در ساختمان اين مواد گروههاي متيل از زيرآيند (سطح پوشش داده شده) دورشده و مانند چتري عمل مي كنند كه مانع نفوذ آب ميگردد. گروههاي پلي سيلوكان به سمت سطح پوشش داده شده جهت گيري مي كنند. اين گروهها به سرعت برروي سطح پخش شده و با تشكيل شبكه سيليكوني دافع آب بوده و در عين حال چسبندگي گرد و خاك به آنها كم ميباشد. همچنين به علت عدم وجود راهي براي عبور نمكهاي مضر و قلياها، امكان ايجاد شوره برروي سطح منتفي ميگردد. از ديگر مزاياي تركيبات سيليكوني در صنايع ساختماني اين است كه به علت كاهش جذب گرد و غبار، آلوده نمي گردند و نيز به دليل عدم ايجاد محيط مرطوب، امكان رشد ميكروارگانيسم ها وجود ندارد. لذا خزه و ... نيز بر روي سطح بناها مشاهده نمي گردد. درصورتيكه در روش سنتي  كه قير و گوني ميباشد، علاوه برصرف هزينه و انرژي بيشتر، رطوبت به طور كامل دفع نگرديده و به اين ترتيب بستر مناسبي براي رشد ميكروارگانيسم ها به وجود مي آيد تا جائيكه در نواحي مرطوب كشور براي جلوگيري از ايجاد خزه برروي نماي ساختمان از ايرانيت استفاده ميشود كه ظاهر نامطلوبي به ساختمان مي بخشد.همچنين واحدهاي گچي كه در آنها از تركيبات سيليكوني استفاده شده، وقتي در اطاقهاي مرطوب نصب مي گردند، آب بسيار كمي به خود جذب مي نمايند و لذا رنگ كردن آنها و يا نصب كاغذ ديواري برروي آنها بسيار ساده تر و با سرعت بيشتري امكان پذير ميباشد.درصورتي كه در مورد واحدهايي كه بدون استفاده از تركيبات سيليكوني در اطاقهاي مرطوب مورد استفاده قرار مي گيرند، به زمان بسيار زياد (حتي تا بيش از يكسال) براي خشك و آماده شدن اين سطوح جهت رنگ آميزي نياز مي باشد و درصورت اجراي رنگ بر روي اين سطوح  مرطوب امكان ايجاد شوره بسيار زياد بوده ، مضاف براين كه به بيش از دو پوشش (دو دست) رنگ نياز مي باشد.استفاده از رنگها و گچهايي كه در آنها پرايمرهاي سيليكوني به كار رفته در اروپا روزافزون شده و در حال حاضر اين مواد جزو مهمترين وكارآمدترين مواد در صنايع ساختماني مي باشند.

كتايون سراج

 

لوله و اتصالات پليمري فشار قوي با قدرت تحمل دماي بالا (كامپوزيتي)

پلاستيكها يا رزينهاي تقويت شده با مواد افزودني و به عبارت جامعتر كامپوزيتهاي پليمري، امروزه در صنعت از اهميت خاصي برخوردارند و روز به روز بر كاربردهاي مختلف آنها افزوده ميشود. باتوجه به خواص مكانيكي برجسته، سبك بودن و راحتي كار با آنها، جايگزين مناسبي براي فلزات در بسياري از كارها بشمار مي روند. اين مواد ضمن داشتن خواص مكانيكي برجسته، از انعطاف پذيري مناسب در طراحي برخوردارند و براحتي ساخته مي شوند. كامپوزيتها مواد سبك، مقاوم در برابر خوردگي، مقاوم در برابر ضربه و بارهاي خستگي مستحكم و با دوامند و به روشهاي مختلف قابل تبديل به يك محصول يا قطعه اند. لوله و اتصالات پليمري كامپوزيتي (ترموپلاستيك) يكي از طرحهايي است كه براي نخستين بار در ايران به اجرا درآمده و از سازمان پژوهشهاي علمي ايران گواهينامه دريافت كرده است.

مشخصات لوله و اتصالات پليمري كامپوزيتي (ترموپلاستيك) :

تحمل فشار 70 بار در دماي 20 درجه سانتيگراد، تحمل دماي  5+ 125 درجه سانتيگراد در فشار كاري، تحمل محلولهاي شيميائي با غلظتهاي مختلف، تحمل شوك حرارتي و انعطاف پذيري مناسب، داراي ضريب انبساط حرارتي ايده ال  (25% نسبت به لوله و اتصالات پليمري ساده).

مقايسه لوله و اتصالات پليمري كامپوزيتي با لوله و اتصالات پليمري ساده :

لوله هاي كامپوزيتي به لحاظ تقويت شدن قادر مي باشند دمايي معادل 5/1 برابر لوله هاي ساده و ضريب انبساط حرارتي 25/0 نسبت به آنها را تحمل كنند، ازطرفي به علت مقاومت بالا و سختي بهتر قادر مي باشد، فشار بسيار بالائي را تحمل كند. بنابراين ميتوان نتيجه گيري كرد كه لوله و اتصالات كامپوزيتي جايگزين مناسبتري براي لوله و اتصالات فلزي محسوب مي شوند.

فرهاد مراديان نژاد

فوم بن....

فوم بن

مهندسین و معماران سازنده ساختمان در دنیا با استفاده از بتن سبک در قسمت های مختلف بنا با سبک کردن وزن ساختمان به طور مستقیم ( به لحاظ سبکی ویژه این نوع بتن ) و صرفه جویی در مصرف انرژی بطور غیر مستقیم ( به لحاظ عایق بودن این نوع بتن در مقابل سرما و گرما و در نتیجه کاهش میزان مواد سوختی ) , از لحاظ اقتصادی امروزه گام های بلند و مهمی برداشته اند .خانم مهندس آزاده شفاعی د ر مقاله ای  به معرفی فوم بتن ( بتن کفی ) و ذکر خواص ویژه آن پرداخته اند. ایشان در این مقاله می نویسد: فوم بتن مصالحی است جدید که برای مصارف مختلف در ساختمان بکار می رود.باید اشاره کرد  خواص فیزیکی منحصر به فرد این محصول ، آن را  بتنی سبک و عایق با مقاومت لازم و کیفیت مطلوب می نماید . این محصول از ترکیب سیمان , ماسه بادی (ماسه نرم ) , آب و فوم ( ماده شیمیائی تولید کننده کف ) تشکیل می شود . ماده کف زا در ضمن اختلاط با آب در دستگاه مخصوص , با سرعت زیادی , حباب های هوا را تولید و تثبیت نموده و کف حاصل که کاملا پایدار می باشد در ضمن اختلاط با ملات سیمان و ماسه بادی در دستگاه مخلوط کن ویژه , خمیری روان تشگیل می دهد که به صورت درجا با در قالب های فلزی یا پلاستیکی قابل استفاده می باشد .لازم به ذکر است این خمیر پس از خشک شدن با توجه به درصد سیمان و ماسه بادی دارای وزن فضایی از 300 الی 1600 کیلو گرم در متر مربع خواهد بود .

گفتنی است ویژگی های عمده فوم بتن را می توان به صورت زیر دسته بندی کرد::

۱-عامل اقتصادی : سبکی وزن با مقاومت مطلوب فوم بتن یا توجه به نوع کاربرد آن , بطور کلی به لحاظ اقتصادی مخارج ساختمان را میزان قابل ملاحظه ای کاهش می دهد 

 ۲- سهولت در حمل و نقل و نصب قطعات پیش ساخته : حمل و نقل قطعات پیش ساخته : حمل و نقل قطعات پیش ساخته با فوم بتن هزینه کمتری را نسبت به قطعات بتنی دربرداشته و نصب قطعات بعلت سبکی آنها . بسیار آسان می باشد

۳- خواص فوق العاده عایق بودن در مقابل گرما , سرما و صدا : فوم بتن به علت پائین بودن وزن مخصوص آن یک عایق موثر در مقابل گرما , سرما و صداست . ضریب انتقال حرارتی فوم بتن بین65 0/0 تا (435/0 k cal / m2 hc می باشد ( ضریب هدایت حرارتی یتن معمولی بین 3/1 تا 7/1 واحد 

۴- خصوصیات عالی در مقابل یخ زدگی و فرسایش ناشی از آن و مقاومت در برابر نفوذ رطوبت و آب : نظر به اینکه فوم بتن در قشرهای سطحی دارای تخلخل فراوان می باشد در نتیجه شکاف های موئین و و درزهای کمتری در سطح ایجاد می شود و اگر  پوشش فوم بتن با ضخامت کافی مورد استفاده قرار گیرد در مقابل خطر نفوذ باران و رطوبت مقاومت مطلوبی خواهد داشت .

۵- مقاومت فوق العاده در مقابل آتش : مقاومت فوم بتن در مقابل آتش فوق العاده می باشد .

۶- قابل برش بودن : به دلیل قابل برش بودن با اره نجاری و میخ پذیر بودن آن . کارهای سیم کشی و نصب لوازم
برقی و تاسیسات خیلی سریع و به راحتی قابل عمل خواهد بود .

شایان ذکر است از کاربرد فوم بتن در ساختمان می توا د به موارئد زیر اشاره کرد:

۱- شیب بندی پشت بام  .  ۲- کف بندی طبقات .  ۳- بلوک های غیر بار بر سبک .   ۴- پانل های جدا کننده یکپارچه و نرده های حصاری جهت محوطه و کاربری در موارد خاص

برگرفته از وبلاگ http://moein-omran.blogfa.comx

چكيده مقالات فولاد

بررسی تأثیر پارامترهای مختلف بر ضریب رفتار سازه های متداول فولادی
 و بهبود توزیع شکل پذیری در قابهای خمشی

امروزه بخش عمده ای از طراحی لرزه ای در آیین نامه ها براساس روش استاتیک معادل وتعیین برش پایه طراحی از طیف خطی می باشد. برای تعیین برش پایه طراحی از ضرایب به نام ضریب اصلاح رفتار و یا ضریب رفتار استفاده می شود. این ضریب در واقع اعمال کننده فلسفه طراحی لرزه ای می باشد. با تغییرکوچکی در این ضریب برش پایه می تواند به مقدار زیادی تغییرکند. در آیین نامه های کنونی این ضریب بیشتر براساس قضاوت مهندسی تعیین شده است و لزوم تبین علمی این ضریب احساس می شود. در این پایان نامه، ابتدا روش تعیین ضریب رفتار سازه بررسی شده و سپس چندین قاب فولادی با تعداد دهانه و طبقات گوناگون با سیستم قاب خمشی، قاب مهاربندی شده هم محور، قاب دوگانه خمشی همراه با بادبند هم محور تحت یک تحلیل رانشی استاتیک قرارگرفته و ضریب رفتار آنها محاسبه شده است. نهایتاً، برای اصلاح توزیع شکل پذیری در طبقات قاب خمشی، دو قاب خمشی مورد برسی قرارگرفته است. نتایج نشان می دهد که مقادر ضریب رفتار سازه به پارامترهای بسیاری از جمله پریود سازه بستگی دارد. به طور کلی با افزایش پریود سازه مقدار ضریب رفتار آن کاهش پیدا می کند. در ضمن با انجام اصلاح در طراحی قاب خمشی توزیع شکل پذیری در طبقات قاب خمشی مناسب تر گردیده است. در این پایان نامه قابهای فولادی ابتدا براساس ضوابط آیین نامه طراحی لرزه ای جدید ایران طراحی شده سپس به وسیله یک تحلیل غیر خطی استاتیکی تحت اثر بارهای جانبی آیین نامه ای، شکل پذیری و ضرائب اضافه مقاومت آنها با توجه به محدود نمودن شکل پذیری محلی در المانهای سازه بدست آمده است. ار نتایج به دست آمده برای محاسبه ضریب رفتار قابها استفاده شده است. در این تحقیق اثر P-Δ در محاسبه ضرائب اضافه مقاومت و شکل پذیر قابها در نظر گرفته شده است. اثر P-Δ در قابهای خمشی باعث کاهش شکل پذیری قابها و همچنین ایجاد یک سختی منفی در آنها بعد ازجاری شدن قاب گردیده است. سختی در قابهای دارای مهاربندی بعد از جاری شدن مثبت می باشد. مقادیر ضریب رفتار محاسبه شده باری قابهای خمشی به طور کلی کمتر از مقادیر آیین نامه ای می باشد. قابهای مهاربندی شده هم محور که تعداد طبقات کمی داشته اند ضریب رفتار بزرگتر از آیین نامه و با فزایش تعداد طبقات مقدار آن کاهش پیدا کرده است. در قابهای مرکب مقدار ضریب رفتار به طور کلی از مقادیر آیین نامه ای بیشتر می باشد. در بررسی های انجام شده ملاحظه گردیده که در قابهای خمشی را به آیین نامه ای ستون قوی و تیر ضعیف، تضمین کننده به وجود نیامدن مفصل پلاستیک در ستونها نمی باشد. با اصلاح رابطه فوق به طوری که در ستونها مفصل پلاستیک به وجود نیاید، توزیع شکل پذیری در طبقات قاب خمش مناسب تر می گردد. تحلل استاتیک غیر خطی افزاینده می تواند نشان دهنده رفتار کل سازه و بیان کننده نحوه تشکلیل مکانیزم خطابی در سازه باشد. از طرف دیگر می توان با مقادیر اضافه مقاومت و شکل پذیری و شکل پذیری طبقه ای به دست آمده از نتایج حاصل از این تحلیل قضاوت مناسب در مورد رفتار سازه ها داشت.

 

مطالعه رفتار دینامیکی ساختمانهای طرح شده با مهار بندی های هم مرکز و خارج از مرکز

مهاربندهای فولادی کاربرد روز افزونی دراحداث سازه های ساختمانی و صنعتی دارند. در سالهای اخیر تحقیقات زیادی در مورد عملکرد و رفتار این نوع سازه ها در حالت های ارتجاعی و خمیری انجام شده است که نتایج حاصل در بهبود ضوابط طراحی و چگونگی اجرای آنها موثر بوده است. اخیراً کاربرد مهاربندهای خارج از مرکز با توجه به رفتار لرزه ای مناسب آنها در سازه ها توصیه می شود. در این پایان نامه ابتدا مطالعات انجام شده در مورد نحوه عملکرد قابهای فولادی، مرور شده و در نهایت بمنظور مطالعه رفتاری و اقتصادی قاب های با مهاربندی هم مرکز(CBF) و خارج از مرکز(EBF)، سه ساختمان بامهاربندی CBF و EBF طراحی شده و سپس با تحلیل های استاتیکی و دینامیکی غیرخطی مورد بررسی قرارگرفته اند. نتایج نشان می دهد که قابهای EBF سبکتر از قابهای CBF می باشند و در ضمن قابهای EBF با توجه به قابلیت اتلاف انرژی مناسب خود در کلیه طبقات، می توانند انرژی زلزله را بطور مناسب، پایدار و یکنواخت تلف نموده بطوریکه تغییرمکان نسبی طبقات آنها با وجود سختی کم این نوع قابها نسبت به قابهای CBF تفاوت چندانی با این قابها نداشته و در عین حال نیز که حالت یکنواخت تری را دارند.در این پایان نامه ابتدا سه نوع ساختمان با تعداد طبقات 5 و 10 و 15 با سیستم قاب فضائی ساده که سیستم باربر جانبی آنها در یک مرحله مهاربند CBF و در مرحله بعدی مهاربند EBF می باشند انتخاب شده و براساس مقاطع موجود درایران طراحی شده اند و سپس تحلیل های استاتیکی غیر خطی و دینامیکی غیر خطی تحت شتابنگاشت های مختلف با بیشینه شتاب های مختلف قرارگرفته اند. نتایج حاصل از طراحی ها و تحلیل ها بیانگر آن است که: پروفیل های IPE موجود درایران با توجه به طول تیر پیوند در نظر گرفته شده ومقادیر کم سطح بال به نسبت سطح جان ملزومات طراحی را جوابگو نبوده و به عنوان تیر پیوند قابل استفاده نمی باشند. از نظر وزنی یک قاب لرزه بر EBF نسبت به قاب مشابه CBF بطور متوسط 20 درصد سبک تر بوده و در قیاس با وزن کل اسکلت ساختمان، سازه EBF بطور متوسط 5 درصد سبک تر از سازه CBF می باشد.با توجه به نتایج تحلیل استاتیکی غیر خطی قابها ملاحظه می شود که قابهای CBF بعد از جاری شدن نسبت به قابهای EBF بطور قابله ملاحظه و ناگهانی سختی خود را از دست می دهند. ضریب تنش مجاز قابهای CBF بیشتر از قابهای EBF بوده در حالی که شکل پذیری قابهای EBF بیشتر از CBF می باشد. توزیع شکل پذیری در طبقات قاب EBF بطورکلی مناسب تر و یکنواخت تر می باشد. از طرف دیگر با بررسی های چرخه های پسماند قابهای CBF و EBF ملاحظه می شود که چرخه های EBF پایدارتر و یکنواخت تر و دارای قابلیت اتلاف انرژیبهتر و توزیع مناسب تر در طبقات نسبت به قاب CBF می باشد. در ضمن جذب انرژی در طبقات فوقانی قابهای EBF کمتر از بقیه طبقات است.نتایج نشان می دهد که اولاً با توجه به سختی بیشتر قابهای CBF نسبت به EBF ملاحظه می شود که قابهای CBF در اثر شتابنگاشتهای مختلف نیروی بیشتری وارد شده است و از طرف دیگر به علت قابلیت جذب انرژی بیشتر قاب های EBF در شتابنگاشتها با بیشینه شتابهای مختلف این قابها تغییر مکان کمتری نسبت به قابهای CBF دارند. ثانیاً با افزایش شتاب ورودی در سازه های EBF مفاصل پلاستیک، اکثراً در تیرهای پیوند بوجود می آید در حالی که در سازه های CBF مفاصل پلاستیک در ستونها و مهاربندی ها بوجود می آید که در نهایت کل سیستم باربر جانبی خسارت می بیند. ثالثاً ضوابط آئین نامه ای طرح قاب EBF تضمین کننده بوجود نیامدن مفصل پلاستیک در عضوهای غیر از تیر پیوند نمی باشد. رابعاً در قابهای EBF با ارتفاع زیاد مفاصل پلاستیک در تیرهای خارج از پیوند در طبقات فوقانی تشکیل شده است که بنظر می آید که تیرهای پیوند طبقات فوقانی قاب EBF باید برای نیروی بیشتر طراحی گردند.

 

تأثیر رفتار غیر خطی سازه ها در توزیع نیروی برشی و لنگر واژگونی طبقه تحت چند مولفه زلزله

توزیع نیروهای زلزله در ارتفاع در آیین نامه های طراحی در برابر زلزله براساس رفتار خطی، مود اول و منظم بودن سازه است و برای در نظر گرفتن اثر مودهای بالا در سازه های با دوره تناوب بالا از نیروی شلاقی استفاده می شود. در صورتی که در نظرگرفتن مواردی چون رفتار غیر خطی سازه ها، چند مؤلفه زلزله، پانل های پرکننده با مصالح بنائی، بیشینه شتاب زلزله و بیشینه سرعت زلزله می توانند در توزیع نیروی برشی و لنگر واژگونی طبقات تأثیر بگذارند. در این تز(مطالعه) ابتدا با جمع آوری تحقیقات انجام شده در زمینه های تأثیر چند مؤلفه زلزله با رفتار سازه ها، پارامترهای مؤثر در تحلیل غیر خطی سازه ها( سختی، میرایی، پانل های پرکننده با مصالح بنائی) و دیدگاه آیین نامه های جهان در رابطه با تحلیل سازه ها تحت ند مؤلفه زمین لرزه، توزیع نیروی برشی و لنگر واژگون طبقات مورد بررسی قرارگرفته است. سپس جهت بررسی عوامل مؤثر در توزیع نیروی برشی و لنگر واژگونی طبقات برای مدلهای مختلف سازه ای فولادی(خمشی، بادبندی X وK و خمشی با پانل های پرکننده) تحلیل دینامیکی(خطی و غیر خطی) تحت شتابنگاشتهای طبس، ناغان و اسلام و ال سنترو انجام شده و با توزیعی که آیین نامه ایران مطرح کرده مقایسه شده است. با توجه به بررسی انجام شده در این مطالعه نتیجه شده است که سازه ها با افزایش بیشینه شتاب زلزله رفتار غیر خطی بیشتری نشان می دهند که باعث تغییر توزیع نیروی برشی و لنگر واژگون طبقات سازه ها می شود. مؤلفه گهواره ای زلزله ها باعث افزایش نیروی برشی و لنگر واژگون طبقات سازه ها می شود. همچنین در نظرگرفتن پانل های پرکنند با مصالح بنائی می تواند باعث افزایش نیروی برشی و لنگر واژگونی طبقات پایینی سازه ها شود.

 

آزمایش ارتعاش اجباری برروی ساختمان جدید مؤسسه و اثر دامنه نیروی ورودی بر فرکانسهای طبیعی آن

خصوصیات دینامیکی سازه ها از قبیل پریودهای طبیعی ارتعاش، شکل مودهای ارتعاشی و میزان میرایی در ردیف مهمترین عوامل هستند که نحوه رفتار سازه را در برابر زلزله مشخص می کنند. در مورد مدلهای ریاضی و تئوری با توجه به اینکه در آنها از فرضیات ساده کننده استفاده می شود و از اثر اجزاء غیر سازه ای صرفنظر می گردد و همچنین با توجه به اینکه میزان میرایی در سازه ها به نوع مصالح مصرفی و روش ساخت بستگی دارد باید دقت این مدلها را از طریق آزمایشهای لرزه ای برروی سازه ها بررسی کرد. جهت بررسی میزان هماهنگی نتایج بدست آمده از تحلیل مدلهای ریاضی و تئورتی با آزمایشهای واقعی، ساختمان جدید مؤسسه بین المللی زلزله شناسی و مهندسی زلزله ابتدا به صورت ریاضی و تئورتی تحلیل شده است و سپس تحت آزمایش تحریک سینوسی پایا قرارگرفته است. برای این منظور از یک دستگاه لرزاننده که قادر به اعمال یک نیروی سینوسی در ساختمان توسط لرزاننده تحریک شده است رکوردهای پاسخ طبقات ساختمان به دست آمده اند و بعد از پردازش رکوردها و از بین بردن نوفه های آنها طیفهای فرکانس- پاسخ در هر طبقه رسم گردیده اند. با توجه به این طیفها و نیز با توجه به نسبت دامنه ها واختلاف فاز شتابنگارها درهر فرکانس تشدید مودهای تغییرشکل ساختمان رسم شده اند و همچنین مقادیر میرایی مودی برای هر مود با استفاده از روش پهنای نوار در طیفهای پاسخ بدست آمده اند. نتایج به دست آمده از تحلیل و آزمایش با هم مقایسه شده اند و سعی شده است که مدل ریاضی به گونه ای اصلاح شود که نتایج حاصل از آن با نتایج حاصل از آزمایش تطابق داشته باشد. در ابتدا در مدل کامپیوتری از اثر سختی میانقابها صرفنظر شده بود لذا بین نتایج مدل کامپیوتر ی و آزمایش اختلاف بسیار قابل ملاحظه ای به دست آمد. بعد از آنکه سختی میانقابها در مدل کامپیوتری اثر داده شد نتایج حاصل از تحلیل کامپیوتری و آزمایش بهم نزدیکتر شده و تطابق بیشتری با هم داشتند. با توجه به اینکه آزمایشها بسته به شرایط، تحت اثر نیروهای مختلف انجام شده اند اثر دامنه نیروی ورودی بر فرکانسهای تشدید بررسی شده و مشخص گردیده که مقدار فرکانسهای تشدید مستقل از مقدار نیروی ورودی می باشد. مطلبی که از مقایسه نتایج آزمایش با مدل کامپیوتری مشخص می شود این است که میانقابها در رفتار سازه دارای نقش اساسی هستند و باید سختی آنها را در تحلیلهای کامپیوتری در نظر گرفت. علاوه بر آن نتایج آزمایش برروی ساختمان عدم صلبیت و انعطاف پذیر بودن کف را نشان می دهد و این بر خلاف فرضیات به کار رفته در مدل کامپیوتری می باشد. قبل از اینکه ميان قابها در مدل کامپیوتری اضافه شوند نتایج از حاصل از تحلیل کامپیوتری نشان داد که در فرکانس 98/1 هرتز در ساختمان پیچش بوجود می آید اما بعد از اینکه اثر میانقابها در مدل کامپیوتری اضافه شد در محدوده فرکانسی 0/12-0/0 هرتز پدیده پیچش مشاهده نشد و این موضوع توسط نتایج آزمایش هم تأیید گردید به این ترتیب که در محدوده فرکانسی مورد آزمایش در ساختمان پیچش بوجود نیامد.

 

بررسی رفتار ستونهای قوطی فولادی پرشده با بتن تحت بارگذاری جانبی زلزله در ساختمانهای بلند

با توجه به کاربرد روزافزون ستونهای قوطی پرشده با بتن در ساختماهای بلند و عملکرد مناسب این ستونها در برابر زلزله از یک طرف و لرزه خیزی اکثر مناطق کشور از طرف دیگر سعی شده است در این مطالعه رفتار این ستونها در برابر بارگذاری جانبی زلزله بررسی شود. در این مطالعه علاوه بر بررسی رفتار خمشی این ستونها در برابر ترکیب بارگذاری ثقلی و جانبی سیکلیک رفتار برشی آنها نیز بررسی شده است. با توجه به اهمیت شکل پذیری و ظرفیت جذب انرژی اعضا سازه ای در برابر زلزله، این مقادیر نیز به طور مفصل مورد بررسی قرار گرفته است. همچنین با توجه به لزوم پیوستگی و هماهنگی فولاد و بتن در مقاطع مرکب، چسبندگی و پارامترهای مؤثر بر مقاومت چسبندگی در ستونهای مرکب نیز مورد بررسی قرارگرفته است. روشی سازگار با آیین نامه های معتبر برای طراحی ستونهای قوطی پرشده با بتن در هر دو حالت ستون کوتاه و ستون لاغر نیز ارائه گشته است. نشان داده شده است که ستون که ستون قوطی پرشده با بتن علاوه بر مقاومت و رفتار خمشی و برشی مطلوب شکل پذیری خوبی داشته و از ظرفیت جذب انرژی قابل توجه ای نیز برخوردار است. به علاوه از روند طراحی ساده ای برخودار بوده و برای طراحی دفتری کاملاً مناسب است. خصوصیات فوق ستونهای قوطی پرشده با بتن را به صورت اعضا سازه ای بسیار مناسب و ممتاز برای ساختمانهای بلند در مناطق زلزله خیز معرفی می کند. رفتار خمشی و شکل پذیری و ظرفیت جذب انرژی ستونهای قوطی پرشده با بتن، در فصول دوم و سوم مورد بررسی قرارگرفته است و نشان داده شده است که این مقادیر به پارامترهای زیادی منجمله نسبت عرض به ضخامت ورق فولادی، ضریب لاغری ستون، طول پرشدگی بتن در ستون ، نوع بتن و فولاد، تعداد سیکل بارگذاری، بار محوری، گل میخ برشگیر بر پوسته فولادی بستگی داشته و نحوه ارتباط آنها نیز بررسی شده است.
با توجه به ضخامت قوطی فولادی در ستون مرکب، این ستونها معمولاً ظرفیت برشی بسیار بالایی از خود نشان داده و عمدتاً در مورد خمشی گسیخته می شوند. رفتار برشی ستونهای قوطی پرشده با بتن در ستونهای کوتاه که در آنها برش بیشترین تأثیر را دارد، در فخصل پنجم مورد مطالعه و بررسی قرارگرفته است و نشان داده شده است که حتی در این حالت نیز ستونهای قوطی پرشده با بتن، از نظر برشی رفتار بسیار مناسب از خود نشان می دهند. با توجه به فرم سازگاری کرنشها در نقاط تماس بتن و فولاد، چسبندگی بین فولاد و بتن در ستونهای مرکب در فصل چهارم بررسی شده است و نحوه تأثیر پارامترهایی چون سن بتن سایز، دما، شرایط نگهداری بتن و انقباض بر مقاومت چسبندگی مشخص شده است. در فصل ششم، سعی شده است روش برای طراحی ستونهای قوطی پرشده با بتن،ارائه شود که علاوه بر هماهنگی با آیین نامه های معتبر، برای طراحی دفاتر مهندسی کاملاً عملی و مناسب باشد. بدین منظور روش گام به گام طراحی ستون قوطی پرشده با بتن در دو حالت ستون کوتاه و ستون لاغر آورده شده است و نشان داده شده است که با استفاده از ستون قوطی فولادی پرشده با بتن در مقایسه با قوطی فولادی از تغییرمکان جانبی کمتر و شکل پذیری بیشتری برخوردار بوده و رفتار لرزه ای مناسبتری از خود نشان می دهند. در بخش پایانی علاوه بر جمع بندی و نتیجه گیری کلی از مطالب ارائه شده در فصول قبل ، نیازهای پژوهشی آینده نیز ارائه گردیده است.

 

طراحی لرزه ای ساختمانهای فولادی بلند با استفاده از جاذبهای انرژی ویسکوالاستیک( VEP)

میراگرهای ویسکو الاستیک در بسیاری از کشورها همچون ایالات متحده، ژاپن، تایوان، مورد آزمایش واقع شده اند و در تعدادی از ساختمانهای بزرگ همچون مرکز تجارت جهانی نیویورک، کلمبیا سنتر، برج دوقلوی سی ونت و... به صورت موفقیت آمیزی مورد استفاده واقع شده اند. در ابتدا از این میراگر جهت مقابله با باد استفاده می شده است، اما با تحقیقات حاصله در طول سالیان اخیر، استفاده از این میراگرها در ساختمانها جهت مقابله با زلزله نیز مورد توجه واقع شده است. تحقیقات نشان می دهند که خواص مکانیکی این میراگرها وابستگی شدید به دما، فرکانس بارگذاری و کرنش برشی دارند. این مطالعه جهت بررسی رفتار لرزه ای ساختمانهای مجهز به میراگر صورت گرفته استف بدین منظور ساختمان 22 طبقه فلزی که به صورت ساختمان مقاوم خمشی در شرایط ایران طراحی گردیده است، یکبار جهت مقاوم سازی مجهز به میراگر گردیده است و یکبار با کاهش مقاطع( طرح جدید) به میراگر مجهز گردیده است و رفتار ساختمانهای مزبور در تحلیل خطی و یک قاب از آنها در تحلیل غیر خطی، تحت اثر زلزله های با محتوای فرکانسی متفاوت مورد بررسی واقع شده اند. نتایج نشان می دهند که به گارگیری میراگر باعث کاهش قابل توجه پاسخ ( خصوصاً تغییر شکلها)می گردد و احتمالاً اثر مودهای بالاتر کاهش می یابد و در ساختمان طرح جدید حدود 5/16% کل فولاد، صرفه جویی گردیده است. در بررسی اثر دما بر عملکرد میراگر و پاسخ سازه ، نتیجه گرفته شد که افزایش دما باعث کاهش جدب انرژی در میراگرهای گردیده و نتیجتاً افزاییش پاسخ را نیبت به دماهای پایین به دنبال دارد. همچنین مشاهده گردید که به کارگیری میراگرها در کاهش نیاز شکل پذیر تیرها مؤثر بوده و باعث کاهش قابل توجه این نیاز می گردند. نتایج این مطالعه نشان می دهند که انرژی پسماند سازه به علت رفتار غیر خطی اعضاء، در اثر استفاده از میراگر کاهش چشمگیری داشته است و مفمصلهای پلاستیک تحت اثر دو زلزله طبس و ال سنترو کاهش چشمگیری داشته اند. نتایج این مطالعه نشان می دهند که به گارگیری روشهای طراحی میراگر براساس کنترل میرایی مودی، برای ساختمانهای بلند احتمالاً نامناسب بوده و نتایج غیر اقتصادی به همراه دارد.

 

مقایسه روشهای خطی و غیر خطی در تعیین آسیب پذیری سازه های موجود

تعیین آسیب پذیری و مقاوم سازی سازه های موجود فصلی است که تقریباً به تازگی ودر دو دهه اخیر مطرح سده و به سرعت پیشرفت کرده است. بسیاری از سازه های موجود ارزش فراوانی داشته و یا به علل مختلفی نمی توان آنها را تخریب کرد و مجدداً ساخت، به همین دلیل نیز باید به مقاوم سازی آنها پس از تعیین نقاط ضعفشان پرداخت. به طور کلی دو روش خطی و غیر خطی در تعیین آسیب پذیری ساختمانها در زلزله وجود دارد. استفاده از روشهای غیر خطی مستلزم صرف زمان و هزینه های زیادی است و از آنجا این برنامه های به بررسی دوبعدی قابهای ساختمان می پردازند، درسازه های با پلان نامنظم که تحت پیچشهای بزرگ قرار دارند ارزیابی با این روشها دقیق نمی باشد. اما روشهای خطی با وجود اینکه رفتار واقعی و الاستوپلاستیک سازه را در نظر نمی گیرند به واسطه نداشتن محدودیت در ابعاد ساختمان سهولت وسرعت در مدلسازی آشنایی کلیه مهندسین با این روشها، امکان تهیه مدل سه بعدی و ملحظ نمودن پیچشها دارای مزایای بسیاری هستند.
هندبوک
ATC22 با ارائه ضرائب و تمهیدات خاصی به ارزیابی خسارت پذیری ساختمانهای موجود با استفاده ازروشهای خطی می پردازد که در این پایان نامه با مدلسازی ساختمان جدید موسسه بین المللی زلزله شناسی و مهندسی زلزله به مقایسه روش خطی ATC22 با روش غیر خطی پرداخت شده است. مدلسازی خطی با برنامه SAP90 و آنالیز غیر خطی نیز توسط برنامه DRAIN 2D پرداخته شده است. مقایسه کلیه نتایج در جداول و نمودارهای فصل آخر آورده شده و با توجه به تطابق خوب نتایج دو روش با یکدیگر می توان نتیجه گیری کرد که در تعیین آسیب پذیری ساختمانهای معمولی در زلزله استفاده از روشهای خطی نیز امکان پذیر بوده و نسبت به روشهای غیر خطی سرعت و قابلیتهای بیشتری دارد. البته این مسئله بدین معنی نیست که روشهای خطی نتایج دقیقتری نسبت به روشهای غیر خطی ارائه می کند زیرا همانطور که قبلا نیز اشاره شد بهترین روش مدلسازی رفتار واقعی و الاستو پلاستیک سازه هنگام زلزله می باشد که این امر تنها با آنالیز غیر خطی امکان پذیر بوده و روشهای خطی تنها به واسطه سهولت و عدم محدویت درمدلسازی توصیه می گردند. در این مقایسه و در فصل نتایج با نشان دادن المانهایی که در هر دو روش به عنوان ضعیف شناخته شده اند روی شکل شماتیک قاب، ملاحظه می شودکه تعداد المانهای بادبندی بیشتری در روش خطی دچار ضعف شده اند که این مطلب نشانگر اثرات پیچش در آنالیز خطی می باشد. همچین نمودار مقایسه پوش تغییرمکان طبقات نیز تغییرمکانهای بزرگتری را در روش خطی نشان می دهد که با توجه به قرارگرفتن قابهای تحت بررسی در روش غیر خطی روی محیط پلان، می توان این موضوع را به لحاظ شدن اثرات پیچش در روش خطی نسبت داد چراکه بیشترین تغییرمکان ها در اثر پیچش در دورترین نقطه از مرکز سختی اتفاق می افتد.

برگرفته از وبلاگ http://www.ghasem1363.blogfa.com 

بررسی روشهای تحلیل ........

بررسی روشهای تحلیل و ضوابط آئین نامه ای برای ساختمانهای مجهز به سیستم جداکننده لرزه ای

 

امروز با گسترش استفاده از سیستمهای جداکننده لرزه ای در ابنیه و سایر سازه ها، آیین نامه های مختلف اقدام به تدوین دستورالعملهایی برای طرح این نوع سیستمها نموده اند. این ضوابط ضمن در نظرگرفتن رفتار سازه های مجهز به سیستمهای جداکننده، از چارچوبی مشابه دستورالعملهای طرح با مطالعه آیین نامه ها و تطابق آنها گامهایی برای تدوین ضوابط طراحی اینگونه سیستمها و تشویق براجرای آنها برداشته شود. در اواخر دهه هشتاد روش آیین نامه SEAOC/UBC در تحلیل استاتیکی سیستمهای مجزا شده با فر رفتار صلب سازه فوقانی مورد بررسی قرارگرفت. در اوایل دهه نود ضمن بهره گیری از مطالات قبلی، روش آیین نامه مزبور در تحلیل استاتیکی معادل سیستمهای مجزا شده لغزشی بررسی گردید. پس از عملکرد اینگونه سیستمها با فرض رفتار الاستیک سازه فوقانی با نتایج به دست آمده از تحلیل استاتیکی معادل آیین نامه، مورد مقایسه قرارگرفت.
پروژه حاضر در ابتدا مروری برانواع سیستمهای مجزاکننده و به بررسی اثر پدیده ها و پارامترهای مؤثر بر اینگونه سیستمها و معادلات و روابط دینامیکی سیستمهای مجزاکننده می پردازد. آنگاه به مطالعه روشهای تحلیل استاتیکی معادل برای سازه های مجزا شده در برخی از آیین نامه های کشورهای مختلف پرداخته و توصیه های آیین نامه
SEAOC/UBC در اینگونه سازه ها به روش مزبور را با فرض رفتار غیر خطی سازه فوقانی مورد مطالعه قرار می دهد. از آنجا که این آیین نامه از ظرفیت شکل پذیری سازه فوقانی به هنگام رفتار غیرخطی استفاده با در نظر گرفتن این پدیده اقدام به مقایسه نتایج حاصل از تحلیل استاتیکی معادل با نتایج تحلیل می نماید، تاریخچه زمانی سازه مجزا شده با فرض رفتار غیر خطی سازه فوقانی شده است. برای این منظور دو مدل سازه یک و چهار طبقه با قاب خمشی فلزی و سیستم سقف دال دو طرفه بتنی موردتحلیل دینامیکی غیر خطی قرارگرفت. مجزاکننده ها نوع بستر( خاک از نوع S1) و مدل نیرو – جابجایی سیستم مجزاکننده مشابه مدلهایی است که پیش از این در بررسی های به عمل آمده به کارگرفته شده است. ضمناً از رفتار غیر خطی مصالح برای بیان رفتار سازه فوقانی ومجزاکننده های هر یک از مدلها استفاده شده است. طراحی سازه ها مطابق دستورالعمل آیین نامه SEAOC/UBC با استفاده از روش تنش مجاز و انتخاب پروفیلهای قوطی شکل برار مقاطع، به وسیله برنامه رایانه ای SAP-90 و STEELER صورت گرفته است. برای تحلیل تاریخچه- زمانی سیستمها از زلزله هایی که روی زمینهای مشابه ثبت گردیده و طیف میانگین آنها تطابق خوب با طیف خاک S1 آیین نامه دارد، استفاده شده است. شتابنگاشتها مشابه مطالعات قبلی مقیاس شده اند. برای مقایسه نتایج بدست آمد از تحلیل تاریخچه – زمانی با نتایج تحلیل استاتیکی معادل از میانگین آماری و مجموع میانگین و انحراف معیار استفاده شده است. هريك از سازه ها تحت زلزله های مزبور و برای هریک از مجزاکننده های به کاررفته، تحلیل غیرخطی شده اند. نتایج بدست آمده از تحلیل دینامیک مدلهای انتخاب با فرض رفتار غیر خطی سازه فوقانی با نتایج تحلیل استاتیک آیین نامه مورد مقایسه قرارگرفت. به همین منظور از شکلها و گرافهایی برای بیان و مقایسه پارامترهای مورد نظر استفاده شده است. پارامترهای مورد مقایسه عبارتند از: جابجایی پایه سازه، جابجایی ناشی از پیچش، برش پایه و توزیع برش در طبقات به طور کلی نتایج برای سازه یک طبقه، از نظر جابجایی پایه و اثر پیچش روند یکسانی نشان نمی دهد و توزیع برش در طبقات بستگی به میرایی مجزاکننده های بکاررفته دارد. در خاتمه پروژه ملاحظات ضروری که می بایست در تدوین ضوابط لازم برای طراحی ساختمانهای مجهز به سیستمهای جداکننده لرزه ای مدنظر قرارگیرد، به اجمال بیان شده است. این دیدگاهها شامل دو دسته می باشند: مسائلی که در ارتباط با سیستم جزاکننده مورد توجه قرارمی گیرند و مسائلی که در ارتباط با سازه فوقانی حائز اهمیت می باشند. مسلما تدوین ضوابط آیین نامه ای برای کشور ایران با بهره گیری از مطالعات عمیق تر روی سایر عوامل، انواع مختلف مجزاکننده ها، نوع خاک و دیگر روشهای تحلل و مطابقت آنها با دیگر آیین نامه های مرتبط میسر خواهد بود. به طورحتم یکی از مشکلات موجود در بکارگیری این سیستمها در حالت متعارف، عدم وجود دستورالعمل رسمی و آگاهی کافی برای عموم مهندسین در این زمینه می باشد. امید آنکه این مجموعه گام کوچکی در شناخت رفتار بهتر سیستمهای مجزاکننده لغزشی برداشته و به تدریج شاهد مطالعات وسیع تر در این زمینه باشیم.

برگرفته از وبلاگ http://www.ghasem1363.blogfa.com