پيش بيني زلزله با ابر زلزله

پیش بینی زلزله با ابر زلزله

مقدمه

اين سوال که آيا پيش بينی زمين لرزه امکان پذير است يا خير به مدت بيش از يک قرن مورد بحث بوده است. گروهی به پاسخ مثبت اين سوال خوشبين هستند و گروهی ديگر بدبين. برای پايان دادن به اين جدال طولانی، تنها دو راه وجود دارد. راه اول اينکه گروه بدبينان بتوانند اثبات کنند پاسخ اين سوال منفی است. درست مثل اينکه در هندسه امکان تقسيم يک زاويه به سه قسمت مساوی غير ممکن است و يا در فيزيک قوانين انرژی بقا دارند. در اين صورت هيچ يک از افراد گروه خوش بينان ديگر تلاش نخواهد کرد که زلزله را پيش بينی کند و اين بحث با صلح و دوستی خاتمه می يابد. رسانه ها، راديو و تلويزيون، نهادهای رسمی و همه مردم کره زمين از اين پس يقين خواهند داشت که پيش بينی زلزله امکان ناپذير است و ديگر بازار شايعه پراکنی و حدس و گمان هم خريداری نخواهد داشت.اما راه دوم اين است که گروه خوش بينان بتوانند نمونه ای واقعی از دستاورد خود را مثل ساخت نخستين هواپيما نشان دهند. در اين صورت گروه بدبينان کم کم ناپديد می شوند و ادعای خود را مبنی بر غيرممکن بودن پيش بينی زلزله به فراموشی می سپارند.در اين مقاله، نويسنده (حامد تاج آبادي)تلاش می کند نشان دهد روش های نوينی وجود دارند که محققانی خوش بين و پرتلاش با آزمودن آنها و کسب نتايج درخشان در پيش بينی نسبتا موفق برخی از زلزله ها توانسته اند نشان دهند که رويای پيش بينی زمين لرزه در آستانه محقق شدن می باشد.

ابرزلزله چيست و آيا ارتباطی بين يک ابرزلزله و زمين لرزه وجود دارد؟

نظريه ابرهای زلزله يکی از نظريات جديد است که روشهای مشابه آنرا نخستين بار محققين چينی و ايتاليايی حدود 300 سال پيش برای پيش بينی زلزله به کار برده اند. اين روشهای قديمی با گذشت زمان و عدم وجود امکانات فنی برای توسعه بيشتر به دست فراموشی سپرده شد تا اينکه در سال 1990 به طور جدی توسط يک محقق چينی به نام ژونگائو شو (Zhonghao Shou) مورد توجه قرار گرفت.مطابق اين نظريه، قبل از وقوع زلزله در نقطه ای که گسل زلزله خيز وجود دارد، بخارات و گازهای گرمی از زمين خارج می شوند که پس از سرد شدن به ابر تبديل می شوند. بر خلاف ابرهای معمولی که منشا آن فعل و انفعالات جوی است و علم هواشناسی به مطالعه رفتار آنها می پردازد، اين ابرها منشا هواشناسی ندارند و تشکيل آنها نشاندهنده فعاليت های گسل موجود در نقطه خروج گازهای گرم از زمين است. اين ابرها به طور ناگهانی و خطی شکل ايجاد می شوند و با ابرهای جوی که تدريجا و توده ای ايجاد می شوند تفاوت دارند. در واقع علم هواشناسی نمی تواند وجود چنين ابرهايی را توجيه کند.

شبيه سازی ابر زلزله بم با پشت سر هم قرار دادن تصاويرماهواره ای از اين نقطه در زمان خروج گازهای گرم گسل زمين در اين منطقه، به خوبی بيانگر حقيقت وجود ابرهای زلزله است.

با توجه به ويژگيهای اين ابرها که ابرزلزله نام گرفته اند، اگر بتوانيم در مورد مکان، حجم و زمان خروج گازهای گرم که با رسيدن به منطقه سرد به ابر بدل می شوند اطلاعات دقيقی بدست آوريم، اين امکان وجود دارد که بتوانيم سه عامل مهم در پيش بينی زلزله يعنی به ترتيب محل وقوع، شدت و زمان دقيق آنرا (با خطای علمی تعريف شده) تخمين بزنيم يا به بيان ديگر احتمال وقوع زلزله را پيش بينی کنيم.بنا براين در مطالعه ابرهای زلزله، مساله اين نيست که خود گسل و فعاليت آن را از نزديک مطالعه کنيم بلکه هدف مطالعه اثر و نتيجه اين فعاليت است که ممکن است به صورت گاز از چندين ساعت گرفته تا حدود 103 روز قبل از وقوع زلزله رخ نمايی کند . طبيعی است اگر اطلاعات موثقی در اختيار داشته باشيم که نشان دهد بين اين ابر و زلزله ارتباط دقيقی وجود دارد می توانيم با پشتوانه علمی وقوع زلزله را پيش بينی کنيم و مثلا بگوئيم به احتمال 68% ممکن است بين 10 روز آينده در منطقه ای مثلثی شکل به مرکز تهران و مساحت معين، زلزله ای با قدرت حدود 7 ريشتر رخ دهد (يا دوزلزله با قدرت حدودی 5 ريشتر يا زلزله های خفيف تر اما با تعداد بيشتر).اين پيش بينی می تواند کاملا علمی باشد و البته با جمله کاملا صحيح " امکان پيش بينی دقيق (يعنی 100%) زلزله وجود ندارد" نيز در تضاد نيست. تنها تفاوت در اين است که جمله اول ممکن است منجر به نجات جان مليونها نفرشود (با جدی گرفتن احتمال خطر و تلاش برای کسب راههای مقابله با خطرات حين و بعد از زلزله) اما جمله دوم هشداری در بر ندارد و حتی احتمال صحت جمله اول را نيز به طور غير مستقيم نفی می کند!

نظريه ابرهای زلزله و علل شکل گيری آنها در طول 14 سال گذشته توسط آقای شو که يک شيميدان بازنشسته می باشد مورد بررسی و مطالعات علمی جدی قرار گرفته است. او مبتکر نظريه پسابش (Theory Dehydration) است که علت ايجاد و فوران گازهای گرم و بخارات شيميايی حاصل از فعاليت درونی گسل ها را توضيح می دهد. وی زندگی خود را وقف تلاش برای بررسی ابرهای زلزله و شناسايی آنها به کمک تصاوير ماهواره های هواشناسی نموده و در اين راه با موفقيت چشمگيری نيز مواجه شده است. او بدون حمايت جدی سازمان يا دولتی خاص به بررسی تصاوير ماهواره های هواشناسی از نقاط مختلف زمين و تجزيه و تحليل ابرهای موجود در اين تصاوير می پردازد تا بتواند ابرهای زلزله را از ابرهای معمولی ديگر تشخيص دهد. نتايج فعاليت های او به طور مرتب از طريق سايت رسمی او منتشر می شود.

پس از شناسايی ابر زلزله، وی با استناد به تجربيات قبلی خود برای پيش بينی زلزله های ديگر و محاسبات علمی سعی می کند حدس بزند به کمک اين نتايج آيا قادر است موقعيت مکانی، بازه زمانی احتمال وقوع زمين لرزه و شدت حدودی آنرا پيش بينی کند يا خير. او يک دانشمند مستقل است و با گذشت 14 سال از فعاليت خود در اين زمينه توانسته است به دقتی در حدود 70 درصد در مورد پيش بينی هايی که انجام می دهد دست يابد.

نخستين مشاهده ابر زلزله توسط او در تاريخ 20 ژوئيه سال 1990 رخ داد. وی توانست يک ابرطولانی و خطی شکل را در ناحیه شمالغربی شهر محل سکونت خود در چين شناسايی کند. درست 18 ساعت بعد زلزله ای با قدرت 7.7 ريشتر در مرکز رودبار به وقوع پيوست که 370 هزار کشته و مجروح بر جای گذاشت. از آنجايی که قريب به مدت 300 روز، از تاريخ 31 می 1990(21 روز قبل از زلزله رودبار) تا 28 آوريل سال بعد، تنها زلزله ای که با قدرت بيش از 7 ريشتر و در جهت مذکور به قوع پيوسته بود زلزله رودبار بود، شو به اين اعتقاد رسيد که احتمالا ارتباطی بسيار قوی بين آن ابر زلزله و زمين لرزه رودبار وجود داشته است. سپس وی تلاش نمود تا به برسی بيشتر نظريه ابرهای زلزله بپردازد و از آنجايی که اين نظريه منسوخ شده بود احساس کرد وظيفه خود اوست که اين روش را توسعه دهد و مطالعات جدی تری را بر مبنای آن انجام دهد.

او تا کنون پيش بينی های متعددی را به طور رسمی در مرکز مطالعات زمين شناسی ايالات متحده به ثبت رسانده است که حدود 70% اين پيش بينی ها درست بوده ا ند. در بين پييش بينی های موفق او پيش بينی زمين لرزه های بزرگی در طول ساليان اخير (زلزله رودبار، ترکيه، افغانستان، پاکستان، چندين زلزله ژاپن و زمين لرزه بم که دقيق ترين پيش بينی او تا کنون بوده است) نيز به چشم می خورد.

او معتقد است گازهای گرم در منطقه گسل، در حدود 30 دقيقه طول می کشد تا از زمين خارج شود اما ماهواره های هواشناسی فعلی از يک منطقه خاص در بازه های زمانی 1 تا 6 ساعت و بيشتر، تصوير برداری می کنند. لذا فرايند تعيين مرکز احتمالی وقوع زلزله با خطا همراه است. بعلاوه در مواردی که گسل در ماههای سرد سال فعال شود تشکيل ابردر محل خروج بخارها سريعتر بوده و امکان تعين کانون احتمالی زلزله با دقت بالاتری امکان پذير است. در واقع به همين دليل بود که او در روز 25 دسامبر سال 2003 يعنی درست يکروز قبل از وقوع زمين لرزه بم موفق به مشاهده ابر زلزله در آن منطقه و پيش بينی وقوع يک زمين لرزه قوی با شدت 6.5 ريشتر در سايت خود شده بود. اما در مواردی که گسل در منطقه ای گرم فعال شده باشد امکان تشخيص ابر زلزله از روی تصاوير ماهواره ای تنها زمانی امکان پذير می باشد که اين بخارات گرم به منطقه ای سرد برسند تا تشکيل ابر دهند.

در واقع عامل اصلی خطا در پيش بينی زلزله با روش تحليل ابر زلزله، ناکافی بودن اطلاعات مورد نياز در تصاوير حاصل از ماهواره های هواشناسی فعلی است و اين خطا در ماههای گرم سال بيشتر است.

در صورتی که شو موفق شود با حمايت دولتهای بزرگ سيستم جديدی از عکسبرداری را در ماهواره های فعلی به کار گيرد که امکان تصوير برداريهای دقيق تری از زمين را در بازه های زمانی کوتاه تر فراهم آورد (بازه 15 دقيقه ای)، می توان اميدوار بود که جنجال بر سر امکان پيش بينی زلزله به نفع گروه خوش بينان و با پشتوانه دقيق علمی و خطای بسيار کم پايان پذيرد. در اين صورت بدون شک حيات مليونها انسان در زمان حال و آينده مرهون تلاش و فداکاريهای او خواهد بود.

بررسی مساله زمين لرزه در ايران و نتايج تحقيقات ژونگائو شو

نتايج علمی بررسی های شو از تصاوير ماهواره ای شمال ايران در طول ماههای گذشته که منجر به پيش بينی زمين لرزه بلده شده بود، اين ترديد را ايجاد می کند که ممکن است به دنبال وقوع زمين لرزه در بلده، زمين لرزه ديگری نيز تا تاريخ 15 ژوئيه (26 خرداد ماه) در محدوده ای مثلثی شکل در اطراف تهران رخ دهد. (ايشان در آخرين نظر رسمی خود در زمان نگارش اين مقاله احتمال وقوع زمين لرزه ای به قدرت 6 ريشتر را در منطقه ای که با علامت X نشان داده شده پيش بينی نموده است(.

علت اين ترديد به تحليل وضعيت ابر زلزله منطقه شمالی ايران مربوط است که در24 فوريه (اوائل بهار) ايجاد شده است.در تاريخ 1 مارس (يک هفته پس از ايجاد ابر)، دکتر شو پيش بينی نمود که دو زمين لرزه به قدرت 6 و 7 ريشتر ايران يا همسايگان آنرا در يک بازه 100 روزه خواهد لرزاند. در تاريخ 28 می، يعنی حدود 90 روز بعد، زمين لرزه ای به بزرگی 6.2 ريشتر در کانون بلده به وقوع پيوست.آنچه از تصاوير ماهواره ای بدست می آيد اين امکان را می دهد که از دو نقطه نزديک به هم، بخارات گرمی از زمين خارج شده اند و به علت گرم بودن هوا و جريانات جوی، اين بخارات به منطقه ای سردتر حرکت کرده و دو ابر را بوجود آورده اند.

احتمال دوم اين است که کانون اصلی خروج گازها و بخارات گرم يک نقطه بوده (بلده) و به علت وجود منطقه ای کوهستانی، اين ابر زلزله با عبور از يک کوه مرتفع به دو بخش تقسيم شده است. با مراجعه به مستندات تصويری ماهواره ای که در سايت وی موجود است، خود شما هم می توانيد هر دو احتمال فوق را بررسی و تائيد کنيد.
شو موفق به کشف پديده ای موسوم به شکم گرمازمينی (geothermal bulge) شده است که نشان می دهد گرمای حاصل از يک گسل فعال باعث تغير در شکل ابرهای سرد بالای گسل میشود. اين پديده به خوبی در گسل های منطقه ای مثلثی شکل به مرکزيت تهران رخ داده است که شاهدی دقيق بر فعاليت اين گسل ها است. در حاليکه علم هواشناسی قادر به توجيه اين پديده نيست، نظريه شو به خوبی آنرا توجيه می کند و نشان می دهد که تغيرات ناگهانی يا موضعی در شکل ابرهای يک منطقه سرد حاکی از داغ بودن گسل های آن منطقه می باشد.در پايان شو اظهار می دارد بر خلاف داده ها و شواهد دقيق زلزله بم، اطلاعات فعلی با قطعيت وقوع يک زمين لرزه در تهران را پيش بينی نمی کنند اما با توجه به در نظر گرفتن شيوه های متعدد تحليل نتايج، اين امکان وجود دارد که در طول 14 روز آينده از تاريخ 3 ژوئيه و به احتمال قوی تر 10 روز(يعنی تا حدود 28 خرداد ماه)، به احتمال 68% زلزله ای با شدت حدودی 7 ريشتر منطقه ای در شمال مرکزی ايران (حوالی تهران) را بلرزاند و اين پيش بينی در صورتی است که فرض کنيم دو ابر خطی شکل زلزله که در اواخر فوريه سال جاری در شمال ايران ايجاد شده اند از دو کانون خارج شده باشند. (در غير اينصورت زلزله بلده نتيجه تنها ابر زلزله تلقی می شود).

لازم به ذکر است از تاريخ 8 خرداد که زمين لرزه شديدی در کانون بلده رخ داده است، تا کنون بيش از 300 پس لرزه در اين شهرستان اتفاق افتاده و طی سه روز اخيرنيززمين لرزه هايی به شدت 3، 1/4 (چهار مميز يک)، 4/4 ، 5/3 (سه مميز پنج) و 6/3 (سه مميز شش) ريشتر به ترتيب در نواحی سمنان، نور و نوشهر ، چهاردانگه کياسر و اراک رخ داده است که نشان از انرژی زياد درونی گسلها و فعال شدن آنها دارد.اين وقايع با پيش بينی های نظريه ابرزمين لرزه در نواحی بين شمال مرکز و مرکزايران (مرکزيت حدودی تهران) که درتاريخ 1 ماه مارس ميلادی توسط شو انجام شده بود همخوانی کامل دارد.

نتيجه گيری

خواه نتايج پيش بينی های انجام شده به روش ابر زلزله توسط شو دقيق يا غير دقيق باشد، اين روش در جامعه دانشمندان با اقبال مواجه شده است و در آينده ای نزديک، دانش بشری به آستانه مورد نياز برای توانايی پيش بينی دقيق تر زلزله ها به کمک تکنيک های متعدد علمی خواهد رسيد. در آن زمان اگر حتی همه ساختمانها نيز مطابق استاندارهای مهندسی ساخنه نشوند حداقل جان ساکنان آنها از خطرات اين واقعه طبيعی در امان خواهد ماند.اما راه حل فعلی چيست؟ با علم به وقوع احتمالی زلزله هيچ مشکل و خطری دفع نمی شود و بدون انجام اقدامات لازم هيچ نتيجه ای جز نگرانی و تشويش خاطر وجود نخواهد داشت. بنابر اين توجه به موارد زير توصيه می شود:راه های مقابله با خطرات احتمالی وقوع زلزله را بيا موزيد و سعی کنيد با خانواده خود بدون اينکه باعث نگرانی آنها شويد در اين مورد صحبت کنيد.دوره فعاليت های شديد گسل های تهران توسط زمين شناسان در حدود 150 سال ارزيابی شده است. آخرين بار در سال 1830 ميلادی زمين لرزه شديدی در اين شهر اتفاق افتاد و در حال حاضر، خطر فعاليت شديد اين گسل ها بيش تراز ده يا 50 سال گذشته می باشد. تهران شهر امنی برای زندگی نيست.سعی کنيد ساختمان محل سکونت خود را با معيارهای مقاوم سازی در برابر زلزله مطابقت دهيد.

منابع و مآخذ

ابرزلزله، نشانه ای مطمئن برای پيش بينی زمين لرزه (ژونگائو شو، شيميدان و نظريه پرداز ابرهای زلزله)
ماهواره های سنجش از دور و پيش بينی زلزله «با نگاهی به ابرهای زلزله در بم» (عبدالرضا انصاری آملی، کارشناس ارشد مرکز سنجش از دور ايران)

ابرهای زلزله و پيش بينی کوتاه مدت زمين لرزه – مصاحبه با ژونگائو شو (پايگاه مرکز مهندسی عمران در ايران)

پايگاه رسمی اينترنتی نظريه ابرهای زلزله و پيش بينی زمين لرزه (ژونگائو شو)

حليل وضعيت پيش بينی زمين لرزه بم (ژونگائو شو)

تحليل وضعيت پيش بينی زمين لرزه های اخير شمال ايران (تهران) (ژونگائو شو)

حامد تاج آبادي ، www.Hamkelasy.com

 

پی سازی  و نکات اجرایی

قبل از اقدام به پی سازی ساختمان باید اطمینان حاصل گردد که در طرح و محاسبات نکات زیر رعایت شده باشد :
 الف – نشست زمین بر اثر تغییر سطح ایستایی
 ب – نشست زمین ناشی از حرکت ولغزش کلی در زمینهای ناپایدار  

پ – نشست ناشی از ناپایداری زمین بر اثر گود برداری خاکهای مجاور و حفر چاه.  

 ت – نشست ناشی از ارتعاشات احتمالی که از تاسیسات خود ساختمان با ابنیه مجاور آن ممکن است ایجاد شود.  

تعیین تاب فشاری زمین

برای روشن کردن  وضع زمین در عمق، باید چاه های آزمایشی ایجاد گردد این چاهها باید به عمق لازم و به تعداد کافی احداث گردد و تغییرات نوع خاک طبقات مختلف زمین بلافاصله مورد مطالعه قرار گیرد و نمونه های کافی جهت بررسی دقیق به آزمایشگاه فرستاده شود. 

برای بررسی و تعیین تاب فشاری زمین در مورد خاکهای چسبنده نمونه های دست نخورده جهت آزمایشگاه لازم تهیه می گردد و برای خاکهای غیر چسبنده آزمایشهای تعیین دانه بندی و تعیین وزن مخصوص خاک و آزمایش بوسیله دستگاه ضربه دار در مح لانجام می گیرد در حین گمانه زنی باید تعیین کرد که آیا زمین محل ساختمان خاک دستی است یا طبیعی و تشخیص این امر حین عملیات خاکبرداری با مشاهده مواد متشکله جدا محل خاکبرداری و وجود سوراخها ومواد خارجی ( نظیر آجر، چوب، زباله و غیره ) مشخص می شود.   به منظور تعیین تاب مجاز زمین می توان از تجربیات محلی مشروط بر آن که کافی بوده باشد استفاده کرد.  ابعاد پی ساختمانهای ساخته شده قرینه ای برای تعیین تاب مجاز زمین خواهد بود.   هنگامی که نتایج  تجربی در دسترس نباشد و از طرف تعیین تاب مجاز زمین با توجه به اهمیت ساختمان مورد نیاز نباشد، می توان تاب مجاز را با تعیین نوع خاک توسط متخصص با استفاده از جدول شماره 2-19 ایران تعیین نمود.   قراردادن پی ساختمان روی خاکریزهایی که دارای  مقدار قابل توجهی مواد رسی بوده ویا به خوبی متراکم نشده باشد صحیح نبوده و باید از آن خود داری کرد در صورتی که پی سازی در این نوع زمین به عللی اجباری باشد، باید نوع و جنس زمین مورد مطالعه و آزمایش قرار گرفته و سپس نسبت به پی سازی متناسب با این نوع زمین اقدام گردد.  

 لغزش زمین :

از  احداث ساختمان روی شیبهای ناپایدار و همچنین زمینهای که دارای لغزش کلی می باشند باید خود داری نمود، زیرا جلوگیری از لغزش این نوع زمینها تقریبا غیر ممکن است و این گونه زمینها غالبا با مطالعات زمین شناسی قابل تشخیص می باشند.  

 چنانچه احداث ساختمان در اینگونه زمینه ضرورت داشته باشد باید تدابیری لازم پیش بینی شود تا حرکات لفزشی زمین موجب بروز خرابی در ساختمان نگردد.  

بتن و بتن آرمه

مصالح

 سیمان

 سیمان پرتلند مورد مصرف در بتن باید مطابق ویژگیهای استانداردهای زیر باشد :

 الف – سیمان پرتلند، قسمت دوم تعیین و یژگیها، شماره 389 ایران.  

  ب – سیمان پرتلند، قسمت دوم تعیین نرمی، شماره 390 ایران.  

پ – سیمان پرتلند قسمت سوم تعیین انبساط، شماره 391 ایران.  

ت – سیمان پرتلند، قسمت چهارم تعیین زمان گیرش، شماره 392 ایران.  

 ث – سیمان پرتلند، قسمت پنجم تعیین تاب فشاری و تاب خمشی شماره 393 ایران.  

ج سیمان پرتلند،قسمت سوم تعیین ییدارتاسیون، شماره 394 ایران

سیمان مصرفی باید فاسد نبوده ودرکیسه های سالم  و یا  قمرنهای مخصوص سیمان تحویل و در سیلو  و یا محلی محفوظ از بارندگی و رطوبت نگهداری شود.  سیمانی که بواسطه عدم دقت در نگهداری و یا هر علت دیگر فاسد شده باشد باید فورا از محوطه کارگاه خارج شود.   مدت سفت شدن سیمان پرتلند خالص در شرایط متعارف جوی باید از 45 دقیقه زودتر و سفت شدن نهایی آن از 12 ساعت دیرتر نباشد  در انبار کردن کیسه های سیمان  باید مراقبت شود که کیسه های سیمان طبقات  تحتانی تحت فشار زیاد کیسه هایی که روی آن قرار گرفته است واقع نشود در نقاط خشک قرار دادن کیسه ها روی یک دیگر نباید از رده ردیف و در نقاط مرطوب حداکثر از 4 ردیف بیشتر باشد.  محل نگهداری سیمان باید کاملاً خشک باشد تا رطوبت به آن نفوذ ننماید.  

شن و ماسه

شن و ماسه  باید از سنگهای سخت مانند گرانیت، سیلیس و غیره، باشد.  بکار بردن ماسه های شیستی یا آهکی سست ممنوع است.  ویژگیهای شن و ماسه مصرفی باید مطابق با استاندارد های زیر باشد :

 الف – استاندارد شن برای بتن وبتن مسلح شماره 302 ایران.  

ب – استاندارد مصالح سنگی ریز دانه برای بتن و بتن مسلح شماره 300 ایران.  

 مصالح سنگی بتن را می توان از شن وماسه طبیعی و رود خانه ای تهیه نمود.  به جز موارد زیر که در آن صورت باید مصالح شکسته مصرف گردد :

در مواردی که بکار بردن مصالح شکسته طبق نقشه و مشخصات و یا دستور دستگاه نظارت خواسته شده باشد.  

 هر گاه مصالح طبیعی و یا رودخانه ای طبق مشخصات نبود ه و یا مقاومت مورد نیاز را دارد.  

 در صورتی که بتن از نوع مارک 350 و یا بالاتر باشد.  

چنانچه مخلوط دانه بندی شده با ویژگیهای استاندارد مطابقت نکند ولی بتن ساخته شده با آن دارای مشخصات مورد لزوم از قبیل تاب، وزن مخصوص و غیره باشد، دستگاه نظارت می تواند با مصرف بتن مزبور موافقت نماید.  

 شن و ماسه  باید تمیز بوده ودانه های آن پهن و نازک و یا دراز نباشد.  مقامت سنگهایی که باری تهیه شن وماسه شکسته  مورد استفاده قرار می گیرند نباید دارای مقاومت فشار کمتر از 300  کیلوگرم بر سانیتمتر مربع باشد.  

 دانه بندی ماسه باید طبق اصول فنی باشد. ماسه ای که برای کارهای بتن مسلح بکار می روند نود وپنج درصد آن باید از الک 76/4 میلیمتر عبور کند و تمام دانه های ماسه باید از سرندی که قطر سوراخهای آن 5/9 میلیمتر است عبور نماید.  دانه بندی ماسه برای بتن و بتن مسلح باید طبق جدول (4 -1-2  الف ) باشد.  

 

جدول شماره ( 4-1-2 – الف )

 اندازه الکهای استاندارد

درصد رد شده از الکهای استاندارد

9500 میگرن

4760 میگرن

2380 میگرن

1190 میگرن

595 میگرن

297 میگرن

149 میگرن

 100

95 تا 100

80 تا 100

50 تا 85 

25 تا 60

10 تا 30

2تا 10

 

 باقیمانده مصالح بین هر دو الک متوالی  جدول فوق نباید بیش از 45 درصد وزن کل نمونه باشد.  

حداکثر لای و ذرات ریز در ماسه نباید از مقادیر زیر تجاوز نماید :

 الف – در ماسه طبیعی و یا ماسه بدست آمده از شن طبیعی                    3% حجم

ب – در ماسه تهیه شده از سنگ شکسته                                  10% حجم

برای کنترل ارقام فوق باید آزمایش زیر در محل انجام گیرد :

 در یک استوانه شیشه ای مدرج به گنجایش 200 سانتیمتر مکعب مقدار 100 سانتیمتر مکعب ماسه ریخته و سپس آب تمیز به آن اضافه کنید تا مجموع حجم 150 سانتیمتر مکعب برسد، بعد آنرا بشدت تکان داده و برای سه ساعت  به حال خود باقی گذارید.  پس از سه ساعت ارتفاع ذرات ریز که بر روی ماسه ته نشین شده و بخوبی از آن  متمایز است از روی درجات خوانده می شود و برحسب درصد ارتفاع ماسه در استوانه محاسبه می گردد درصد رس و لای ذرات ریز که بدین ترتیب بدست می آید نباید از مقادیر مشخص شده در بالا تجاوز نماید.  

 مصرف شن و ماسه ای که از خرد کردن سنگهای مرغوب و سخت در کارخانه بدست می آید  مشروط بر آنکه ابعاد دانه های  آنها در جدول دانه بندی فوق قرار گرفته باشند، نسبت به شن و ماسه طبیعی ارجحیت دارد.  

 شن وماسه بصورت حجمی و یا وزنی با پیمانه ها ویا ترازوهایی که بدین منظور تهیه شده اند اندازه گیری می شوند.  مقدار شن و ماسه مصرفی در بتن جدولی که بعدا خواهد آمد مشخص شده است.  

 ابعاد شن مصرفی برای بتن باید طوری باشد که 90 درصد دانه های آن بر روی الک 76/4 میلیمتری باقی بماند.  دانه بندی شن نباید از حدود مشخص شده در جدول شماره ( 4-1-2- ب ) تجاوز نماید.  اندازه الک طبق استاندارد شماره 295 ایران خواهد بود.   انبار کردن شن و ماسه باید به نحوی باشد که موارد خارجی  و زیان آور به آنها نفوذ نکنند.  مصالح سنگی باید بر حسب اندازه دانه ها تهیه و در محلهای مختلف انباشته شوند. مصالح درشت دانه ( شن ) باید حداقل در دو اندازه جداگانه تهیه و انباشته گردد.  مصالحی که دانه بندی آنها حدودا  بین 76-4 تا 1/38 میلی متر است باید از مرز دانه های 05/19 میلیمتری و مصالحی که دانه بندی آنها بین 76/4 تا 8/50 یا 5/64 میلیمتر است باید از مرز دانه های 4/25 میلیمتری به دو گروه تقسیم گردند.  

 آب

 آب مصرفی بتن باید تمیز و عاری از روغن و اسید و قلیایی ها واملاح و مواد قندی و آلی و یا مواد دیگر یکه برای بتن و فولاد زیانبخش است، باشد.  منبع تأمین آب باید به تایید دستگاه نظارت برسد.  آب مورد مصرف باید در مخازنی نگهداری شوند که از آلودگی با مواد مضر محافظت گردد :

 حداکثر مقدار مواد خارجی موجود در آب بشرح زیر است :

 الف – حداکثر مواد اسیدی موجود در آب باید به اندازه ای باشد که 10 میلیمتر مکعب سود سوز آور سی نرمال بتواند یک سانتیمتر مکعب آب را خنثی کند.  

 ب -   حداکثر مواد قلیایی موجود در آبباید به اندازه ای باشد که 50 میلیمتر مکعب اسدی کلریدریک دسی نرمال  بتواند یک سانتیمتر مکعب آب را خنثی کند.  

 پ – درصد مواد موجود در آب نباید از مقادیر زیر تجاوز کند :

 مواد آلی – دو دهم در هزار

 مواد معدنی – سه در هزار

 مواد قلیایی – یک درهزار

 سولفاتها – نیم در هزا ر

در حالتی که کیفیت آب مصرفی مورد تردید باشد در صورتی  می توان از آن استفاده نمود که تاب فشاری بتن نمونه ساخته شده با این آب حداقل 90 درصد تاب فشاری بتن نمونه ساخته شده با آب مقطر باشد.  بطور کلی مصرف آبهای آشامیدنی تصفیه شده برای ساختن بتن بلامانع است. 
 
 

كامپوزيت‌ها يا چندسازه‌های...

كامپوزيت‌ها يا چندسازه‌های

از اولين كامپوزيت‌ها يا همان چندسازه‌هاي ساخت بشر مي‌توان به كاه گل اشاره كرد. قايق‌هايي كه سرخ‌پوست‌ها با قير و بامبو مي‌ساختند و تنورهايي كه از گل، پودر شيشه و پشم بز ساخته مي‌شدمد و در نواحي مختلف كشورمان يافت شده است، از كامپوزيت‌هاي نخستين هستند.
بسياري از نيازهاي صنعتي صنايعي مانند صنايع فضايي، راكتورسازي، الكترونيكي و غيره نمي‌تواند با استفاده از مواد معمولي شناخته شده، برآورده شود. اما قسمتي از آن نيازها، مي‌تواند با استفاده از چند ساه‌ها يا كامپوزيتها برآورده گردد. چندسازه‌ها به موادي گفته مي‌شود كه از مخلوطي از دو يا چند عنصر ساخته شده باشند. درحاليكه در چندسازه‌ها، نه فقط خواص هر يك از اجزاء آن برجا باقي مي‌ماند، بلكه درنتيجه پيوستن آنها با يكديگر، خواص جديدتر و بهتر هم بدست مي‌آيد. مواد مختلط هميشه ناهمگن مي‌باشد.
بررسيها و تحقيقات براي دست يافتن به مواد جديدتر با خواص مكانيكي بهتر، همواره انجام مي‌گرفته و هنوز هم همگام با پيشرفت صنايع دنبال مي‌گردد. در اين بررسيها، اغلب اين هدف دنبال مي‌شود كه به موادي با نسبت مناسب از استحكام كششي به چگالي، استحكام حرارتي بالا و خواص ويژه سطح خارجي دست يابند.

انواع چندسازه‌ها را مي‌توان به گروههاي زير طبقه‌بندي نمود:

1- كامپوزيت‌هاي پايه پليمري: اين مواد اهميت صنعتي فراواني دارد و هنوز هم تحقيقات در اين زمينه ادامه دارد. مواد مصنوعي تقويت شده با الياف شيشه (فايبرگلاس‌ها) يكي از اين مواد مي‌باشد كه تاكنون كاربرد صنعتي وسيعي پيدا كرده است.

2- كامپوزيت‌هاي پايه فلزي

3- كامپوزيت‌هاي پايه سراميكي

كامپوزيت‌هاي پايه پليمري بيش از 90% كاربرد كامپوزيت‌ها را به خود اختصاص داده‌اند و از بقيه مهمتر هستند. سابقه استفاده از كامپوزيت‌هاي پيشرفته، به دهه‌ 1940 بازمي‌گردد. در آن زمان ارتش‌هاي آمريكا و شوروي سابق در رقابتي تنگاتنگ با يكديگر، موفق به ساخت كامپوزيت پايه پليمري الياف بور/ رزين اپوكسي براي استفاده در صنعت هوا فضا شدند. 20 تا 30 سال پس از آن، كامپوزيت‌هاي پايه پليمري به طور گسترده‌اي به سوي صنايع شهري از جمله ساختمان و حمل و نقل روي آوردند. به طور مثال امروزه خودروهايي ساخته مي‌شود كه تماماْْ كامپوزيتي هستند. استفاده از كامپوزيت ها در اين كاربرد به علت ويژگي‌هايي چون وزن كمتر، درنتيجه سوخت كمتر و عمر طولاني‌تر آنهاست. با توجه به پايداري بسيار زياد كامپوزيت هاي پايه پليمري و مقاومت بسيار خوب آنها در محيط‌هاي خورنده، اين كامپوزيت‌ها، كاربردهاي وسيعي در صنايع دريايي پيدا كرده‌اند كه از آن جمله مي‌توان به ساخت بدنه قايق‌ها و كشتي‌ها و تاسيسات فراساحلي اشاره داشت. استفاده از كامپوزيت‌ها در اين صنعت، حدود 60% صرفه‌جويي اقتصادي داشته است كه علت اصلي آن مربوط به پايداري اين مواد است.
صنعت ساختمان پرمصرف‌ترين صنعت براي مواد كامپوزيتي است.استخرهاي شنا، وان حمام، سينك ظرفشويي و دست‌شويي، كف‌پوش، نماپوش، سقف‌پوش، برج‌هاي خنك‌كننده و … همگي كامپوزيت‌هاي پايه پليمري هستند. سبكي، سهولت شكل‌دهي، مقاوت در برابر خوردگي و قابليت آب‌بندي، از ويژگي‌هاي كامپوزيت‌هايي است كه در صنعت ساختمان به كار مي‌رود. فايبرگلاس يا الياف شيشه كه پركاربردترين كامپوزيت‌ها هستند، فيبرها يا الياف ساخت بشر است كه در آن ، ماده‌ي تشكيل دهنده‌ي فيبر، شيشه است. الياف شيشه‌ها، موارد استفاده‌هاي فراواني از جمله در: ساخت بدنه‌ي خودروها و قايق‌هاي تندرو و مسابقه‌اي، كلاه ايمني موتورسواران، عايقكاري ساختمانها و كوره‌ها و يخچالها و … دارند. ساختمان و اندازه‌ي اين الياف شيشه‌ها بسيار متغير است. كوچكترين آنها به وسيله‌ي چشم غير مسلح ديده نمي‌شود و بسيار ريز هستند. اندازه‌هاي كمي بزرگتر از آن ذراتي هستند كه در كارخانجات ساخت فرآورده‌هاي الياف شيشه‌ها به كمك هوا نقل و انتقال يافته و سبب شوزش پوست و بيني و گلو مي‌شود. الياف شيشه متداولترين الياف مصرفي كامپوزيت‌ها در دنيا و ايران است كه متاسفانه در ايران ساخته نمي‌شود. انواع الياف شيشه عبارتند از انواع
E , C , S و كوارتز. تركيب الياف شيشه نوع E يا الكتريكي ، از جنس آلومينوبور و سيليكات كلسيم بوده و داراي مقاومت ويژه الكتريكي بالايي است. الياف شيشه نوع S ، تقريباْْ 40 درصد استحكام بيشتري نسبت به الياف شيشه نوع Eدارند. الياف شيشه نوع C يا الياف شيشه شيميايي، داراي تركيب بور و سيليكات كربنات دو سود بوده و نسبت به دو مورد قبل پايداري شيميايي بيشتري به خصوص در محيط‌هاي اسيدي دارد. الياف شيشه كوارتز، بيشتر در مواردي كه خاصيت دي‌الكتريك پايين نياز باشد، مانند پوشش آنتن‌ها و يا رادارهاي هواپيما استفاده مي‌شوند.

منبع : http://mollasadra.persianblog.com/

هر ماه یک مقاله ...

ساختار كار پلها

مقدمه :

اين مقاله به بحث و بررسي پيرامون انواع پل ها و ساختارشان پرداخته است. شما در اين مقاله با انواع پل هاي تيري, پل هاي قوسي, پلهاي زيرقوسي و پل هاي معلق آشنا خواهيد شد. به علاوه اين كه نيروهايي را كه بر پلها تاثير مي گذارند را خواهيد شناخت. و نيز عكس هايي را از پلهاي معلق, پلهاي تيري و پل هاي قوسي و زير قوسي را تماشا خواهيد كرد. اين مقاله با زباني ساده و قابل فهم به بررسي پلها مي پردازد. اميد است مورد رضايت شما قرار گيرد.بدون شك تا به حال پلي را ديده ايد و يا به احتمال زياد از روي يكي از آنها عبور كرده ايد. حتي اگر شما تخته يا كنده درخت را براي جلوگيري از خيس شدن خود بر روي آب قرار دهيد در واقع شما يك پل ساخته ايد. حقيقتاً پل ها در همه جا وجود دارند و در واقع يك بخش طبيعي و بديهي از زندگي روزمره ي ما را تشكيل مي دهند. يك پل مسيري را بر روي مانع ايجاد مي كند كه اين موانع مي تواند رودخانه, دره, جاده, خطوط راه آهن و ... باشد.در اين مقاله ما سه نوع اصلي از پل ها را مورد مطالعه و بررسي قرار خواهيم داد كه شما مي توانيد بفهميد كه هركدام چگونه كار مي كنند. نوع پل بكار رفته در يك مكان به نوع مانع موجود در آنجا بستگي دارد. معيار اصلي در تعيين نوع پل وسعت و گستردگي آن مانع مي باشد. چه مسافتي ميان طرفين مانع وجود دارد؟ اين مسئله, فاكتور اصلي در تعيين نوع پلي است كه قرار است در آن محل احداث شود. با سپري شدن زمان و  مطالعه اي مقاله علت آن را متوجه خواهيد شد.  

*** سه نوع اصلی از پلها موجودند:           پل تیري               پل قوسي                      پل معلق

تفاوت عمده ي اين سه پل در فاصله دهانه ي پل است. دهانه, فاصله اي است بين پايه هاي ابتدايي و انتهايي پل, اعم از اينكه آن ستون, ديوارهاي دره يا پل باشد. طول پل تيري مدرن امروزه از 200 پا (60متر) تجاوز نمي كند. در حالي كه يك پل قوسي مدرن به 800 تا 1000 پا (240 تا 300 متر) همو مي رسد. پل معلق نيز تا 7000 پا طول دارد.چه عاملي سبب مي شود كه يك پل قوسي بتواند درازاي بيشتري نسبت به پل تيري داشته باشد؟ و يا يك معلق بتواند تقريباً تا 7 برابر طول پل قوسي را داشته باشد. جواب اين سوال زماني بدست مي آيد كه بدانيم چگونه انواع پلها از دو نيروي مهم فشاري و كششي تاثير مي پذيرند.

نيروي فشاري : نيرويي است كه موجب فشرده شدن و يا كوتاه شدن چيزي كه بر روي آن عمل مي كند مي شود.

نيروي كششي : نيرويي است كه سبب افزايش طول و گسترش چيزي كه بر روي آن عمل مي كند, مي گردد.

در اين زمينه مي توان از فنر به عنوان يك مثال ساده نام برد. زماني كه آن را روي زمين فشار مي دهيم و يا دو انتهاي آن را به هم نزديك مي كنيم, در واقع ما آن را را متراكم مي سازيم. اين نيروي تراكم يا فشاري موجب كوتاه شدن طول فنر مي شود. و نيز اگر دو سر فنر را از يكديگر دور سازيم, نيروي كششي در فنر ايجادشده, طولفنر را افزايش مي دهد.نيروي فشاري و كششي در همه پل ها وجود دارند و وظيفه طراح پل اين است كه اجازه ندهد اين نيروها موجب خمش و يا گسيختگي گردد. خمش زماني اتفاق مي افتد كه نيروي فشاري بر توانايي شئ در مقابله با فشردگي غلبه كند. بهترين روش در موقع رويارويي با اين نيروها خنثي سازي,پخش و يا انتقال آنهاست. پخش كردن نيرو يعني گسترش دادن نيرو به منطقه وسيع تري است چنانكه هيچ تك نقطه مجبور به متحمل شدن بخش عمده ي نيروي متمركز نباشد. انتقال نيرو به معني حركت نيرو از يك منطقه غير مستحكم به منطقه مستحكم است, ناحيه اي كه براي مقابله با نيرو طراحي شده و منظور گرديده است. يك پل قوسي مثال خوبي براي پراكندگي است حال آنكه پل معلق نمونه اي بارز از انتقال نيروست.  

پلهاي تيري : يك پل تيري, اساساً يك سازه افقي مستحكم است كه بر روي دو پايه نصب شده است و اين پايه ها, هر يك در انتهاي طرفين پل قرار دارند. وزن پل و هرگونه وزن اضافي ديگر كه بر روي پل اعمال مي شود, مستقيماً توسط پايه ها تحمل مي شوند.

فشار : نيروي فشاري خود را در بالاي عرشه پل يا جاده نمايان مي سازد. اين نيرو موجب مي شود كه بخش بالايي عرشه كوتاه- تر گردد.

كشش : برآيند نيرو فشاري در بخش بالايي عرشه به ايجاد نيروي كششي در بخش پاييني عرشه پل منجر مي شود. اين كشش موجب افزايش طول در بخش پاييني پل مي شود.

پراكندگي : بسياري از پلهاي تيري كه شما مي توانيد آنها را در بزرگراهها بيابيد, براي تحمل بار  از تيرهاي بتوني يا فولادي بهره مي گيرند. اندازه تير و بويژه ارتفاع تير بر حسب مسافتي كه تير دارد محاسبه مي شود.با افزايش ارتفاع تير, به مقدار مصالح بيشتري براي پراكنده كردن كشش مورد نياز است. طراحان پل براي ايجاد تير هاي بلند از شبكه هاي فلزي يا خرپا بهره مي گيرند. اين خرپا به تير استحكام داده و توانايي آن را در پخش كردن نيروي فشاري يا كششي افزايش مي دهد. زماني كه تير شروع به متراكم شدن مي كند, اين نيرو در ميان خرپا پخش مي شود. به غير از خلاقيت موجود در خرپا, پل تيري در ميزان طول خود محدود است. با افزايش طول آن اندازه خرپا نيز مي بايست افزايش يابد تا زماني كه خرپا به نقطه مي رسد كه ديگر نمي تواند وزن خود را تحمل كند.

 انواع پل هاي تيري : پل هاي تيري به سبك هاي بسيار زيادي ساخته  مي شود. نوع طراحي, مكان و چگونگي ساخت يك خرپا, تعيين كننده نوع يك خرپاست. در بدو انقلاب صنعتي, احداث پلهاي تيري در ايالات متحده با سرعت توسعه يافت. طراحان با طرحهاي نوين و سازه هاي مختلف و متعدد اين حرفه را رونق بخشيدند. پل هاي چوبي جاي خود را به پلهاي فلزي يا نيمه فلزي دادند. اين نمونه هاي متنوع از خرپا ها گامهاي موثري را در جهت پيشرفت در اين زمينه برداشت. يكي از ابتدايي ترين و مشهور ترين آنها خرپاي «هاو»1 بود كه در سال ١٨۴٠ توسط «ويليام هاو»2 طراحي و ابداع شد.شهرت ابداع جديد وي در طرح خرپايش نبود, چرا كه مشابه طرح kingpost بود. چگونگي استفاده از تيرهاي آهني عمودي با مجموعه اي از تير هاي چوبي مورب  طرح او بود كه مورد توجه قرار گرفت. بسياري از پلهاي تيري امروزه هنوز از طرح هاو در خرپايشان استفاده مي كنند.

  مقاومت خرپا  : يك تير به تنهايي هرگونه فشردگي يا كشش را در بر خواهد گرفت. بيشترين فشردگي در بالاترين نقطه تير و بيشترين كشش در در پايين ترين نقطه تير است. در وسط تير فشردگي و كشش كمتري وجود دارد.اگر تير طوري طراحي شود كه بيشترين مقدار مصالح در بالا و پايين تير و در وسط تير مصالح كمتري مصرف شود, بهتر خواهد توانست نيروهاي كششي يا فشاري را تحمل كند. ( در توضيح مي توانيم بگوييم كه تير هاي I شكل مستحكم تر از تير هاي مستطيلي ساده است).مركز تير از عضو هاي مورب خرپا تشكيل شده طوري كه بالا و پايين خرپا نشان دهنده بالا و پايين تير است. با نگرش به خرپا به اين شيوه ما قادريم ببينيم كه بالا و پايين تير مصالح بيشتري نسبت به مركز آن مصرف مي كند(به اين دليل كه مقواي چين دار خيلي مستحكم است).در اضافه به مطالب فوق در مورد تاثيرات خرپا, علت ديگري نيز وجود دارد دالّ بر اينكه چرا خرپا مستحكم تر از تير است: يك خرپ توانايي پخش كردن نيرو را دارد. خرپا طوري طراحي شده است كه به دليل داشتن تعداد زيادي از مثلث ها _كه به طور معمول در آن مورد استفاده قرار مي گيرد_ هم مي تواند يك سازه بسيار مستحكم ايجاد كند و هم كار انتقال نيرو را از يك نقطه به منطقه وسيعي انجام دهد.

 پل قوسي : يك پل قوسي سازه اي است به شكل نيم دايره كه در هر طرف آن نيم پايه  (پايه هاي جناحي) قرار دارد. طراحي قوس طوري است كه به طور طبيعي وزن عرشه پل را به نيم پايه ها منتقل و منعطف مي كند.

فشار : پلهاي قوسي همواره تحت فشار قرار گرفته اند. نيروي فشاري همواره در امتداد قوس و به سمت نيم پايه ها وارد مي شود.

كشش : كشش در يك قوس ناچيز و قابل اغماض است. خاصيت طبيعي خميدگي قوس و توانايي ان در پخش نيرو به بيرون, به طور قابل ملاحظه اي  تاثيرات كشش را در قسمت زيرين قمس كاهش مي دهد. هرچند با زياد شدن زاويه ي خميدگي ( بزرگتر شدن نيمدايره قوس) تاثيرات نيروي كششي نيز در آن افزايش مي يابد.همانطور كه اشاره شد, شكل قوس به تنهايي موجب مي شود كه وزن مركز عرشه پل به پايه هاي جناحي منتقل شود. مشابه پلهاي تيري محدوده ي اندازه پل در مقاومت پل تاثير گذاشته و در نهايت بر ان چيره خواهد گشت.

 انواع پلهاي قوسي

پراكندگي : انواع قوس ها محدود هستند. امروزه قوس هايي مانند «رمان»3 , «باروك»۴ و «رنسانس»۵ وجود دارند كه همه آنها از نظر معماري و ظاهري متمايز هستند ولي از نظر ساختار يكسانند. ميزان مقاومت اين پلها به شكل هندسي آنه بستگي دارد. يك پل قوسي احتياج به هيچگونه تكيه گاه يا كابل ندارد. و قوسهايي كه از سنگ ساخته شده است حتي نيازي به ساروج يا ملاط نيز ندارد. در گذشته نيز روميان باستان پلهاي قوسي (پل آب بر) ساخته اند كه هنوز هم پابرجا هستند و سازه هاي آنه امروزه نيز با اهميت به شمار مي آيد.

پل معلق : پل معلق پلي است كه توسط كابل ها (يا ريسمانها يا زنجيرها) در عرض رودخانه (يا در هر جايي كه مانع وجود داشته باشد) كشيده شده اند و عرشه توسط اين كابل ها معلق مانده است. پل هاي معلق مدرن دو برج در ميان پل دارند كه كابل ها آن را مي كشند. بنابراين برج ها بيشترين وزن جاده را تحمل مي كنند.

نيروي فشاري : نيروي فشاري عرشه پل معلق را به سمت پايين متراكم مي سازد در نتيجه اين نيروي فشاري به برجها وارد مي آيند. اما از آنجا كه اين يك پل معلق است, كابلها اين نيروي فشاري را از برجها گرفته و آن را در بين خود پراكنده مي كنند. و آن را به زمين منتقل مي كنند, جايي كه آنها محكم بسته شدند.

كشش : كابلهايي كه ميان دو لنگرگاه خود يعني تكيه گاهها قرار گرفته اند, دريافت كننده نيروي كششي هستند. وزن پل و حمل و نقل روي آن سبب مي شود كه اين كابل ها به شدت كشيده شوند. تكيه گاهها نيز تحت كشش هستند ولي از آنجا كه همانند برجها, محكم به زمين بسته شده اند, كشش موجود در آنها پراكنده مي شود. تقريباً همه پلهاي معلق به غير از كابل ها از يك سامانه خرپا نيز بر خوردارند كه در زير عرشه پل قرار گرفته است (Deck truss). اين سامانه موجب استحكام بيشتر عرشه و كاهش تمايل سطح جاده به نوسان و مواج شدن مي شود.

انواع پلهاي معلق : پلهاي معلق به دو شكل طراحي مي شوند: پل معلقي كه به شكل M است و نوع كم كاربردتري كه به صورت «كابل ايستاده»6 طراحي شده كه بيشتر شبيه A است. پلهاي كابل ايستاده ديگر مانند پلهاي معلق معمولي  نيازي به دو برج و چهار تكيه گاه ندارند. در عوض كابلها از سمت جاده به بالاي برج محكم بسته شده اند. در هر دو نوع پل, كابلها تحت كشش هستند.

نيروهاي ديگر در پل : ما در مورد دو نيروي بزرگ و مهم فشاري و كششي در طراحي پل بسيار صحبت كرديم. تعداد بسيار زياد ديگري از نيروها در پل وجود دارند كه در طراحي پل بايد مد نظر قرار گرفته شوند. اين نيرها معمولاً به محل مشخصي بستگي داشته و يا به نوع پل مرتبط است.

نيروي گشتاوري : نيروي گشتاوري نيروي چرخشي يا پيچشي و يكي از نيروهايي است كه به طور موثر در پلهاي قوسي و تيري وجود ندارد ولي به ميزان قابل ملاحظه اي در پلهاي معلق وجود دارد. شكل طبيعي قوس و خرپاهاي موجود در پلهاي تيري اثرات مخرب اين نيرو را از بين مي برد. پلهاي معلق به دليل معلق بودن در هموا (توسط كابلها) در برابر اين نيروي گشتاوري بخصوص در هنگام وزش بادهاي تند بسيار اسيب پذير است.همه ي پلهاي معلق در عرشه ي خود از خرپا ها بهره مي برند كه همانند پلهاي تيري تاثيرات نيروي گشتاوري را كاهش مي دهد ولي در پلهايي با طول زياد, خرپاي موجود در عرشه به تنهايي كافي نيست. آزمون « تونل باد»7 براي سنجش ميزان مقاومت پل در برابر جنبش هاي چرخشي بر روي مدل آزمايش مي شود. ايجاد خرپاهاي آيروديناميك در سازه هاو كابلهاي آويزان مورب از روش هايي هستند كه براي تقليل تاثيرات نيروهاي گشتاوري به خدمت گرفته مي شود.

تشديد : تشديد ( ارتعاش در چيزي كه توسط نيروي خارجي به وجود آمده و با ارتعاش طبيعي اصل آن چيز, هماهنگ و هم موج است) نوعي نيرويي است, افسار گسيخته كه مي تواند بر روي پل اثرات مخربي بگذارد. امواج تشديد كننده از ميان پل به صورت امواج عبور خواهد كرد. يك نمونه مشهور از قدرت تخريب اين امواج مرتعش پل «تاكوما ناروز»8 است كه در سال 1940 توسط بادي با سرعت 40 مايل در ساعت (64 كيلومتر در ساعت) تخريب شد. بررسي هاي دقيق از محل نشان مي دهد كه خرپاي عرشه ناكارآمد بوده ولي با اين حال عامل اصلي فرو ريزي پل نبوده. در آن روز باد با سرعت به پل ضربه زده و با برخورد قائم به پل باعث ايجاد ارتعاش شده است. اين باد هاي متوالي لرزش و ارتعاش را افزايش داده تا آنجا كه اين امواج توانستند پل را فرو ريزند. زماني كه يك ارتش بر روي پل رژه مي رود, اغلب به سربازان گفته مي شود " قدم رو" . با اين كار, ريتم رژه ي آنها سبب ايجاد تشديد در پل مي شود. اگر ارتش به اندازه كافي بزرگ باشد و آهنگ ارتعاشي لازم را داشته باشد در نهايت مي تواند پل را فرو پاشد.به منظور مقابله با تاثيرات تشديد در يك پل, خيلي مهم است كه در پل كاهندهاي امواجي طراحي شود تا در اين امواج تداخل ايجاد كرده و از شدت آن بكاهد. ايجاد تداخل يك روش موثر در برابر امواج مخرب مي باشد. تكنيك هاي كاهش امواج معمولاً شامل اينرسي نيز هستند. اگر پلي, به عنوان مثال يك جاده با سطح پيوسته و يك تكه داشته باشد, يك موج قوي مي تواند در امتداد پل حركت كرده و منتقل شود. اگر جاده از تكه هاي مختلفي تشكيل شده باشد و صفحات آن همديگر را همپوشاني كرده باشند آنگاه جنبش از يك بخش توسط صفحات به بخش ديگر منتقل مي شود. از آنجا كه آن صفحات بر روي يكديگر قرار گرفته اند, اصطكاك نيز ايجاد مي شود. اين ترفند, اصطكاك كافي را براي تغيير فركانس امواج مرتعش را توليد مي كند. با تغيير فركانس مي توانيم از ورود امواج مخرب به سازه جلوگيري كنيم. تغيير بسامد به طرزي موثر دو نوع مختلف از موج را به وجود مي آورد كه موجب خنثي شدن يكديگر مي شوند.

آب و هوا : نيروي طبيعت به ويژه آب و هوا به گونه ايست كه مبارزه با آن مشكل و حتي در برخي موارد امكان پذير نيست. باران, يخبندان, طوفان و نمك هر كدام به تنهايي مي توانند در فرو پاشي پل نقش بسزايي داشته و تحت يك مجموعه به احتمال بسيار قوي خواهند توانست پل را تخريب كنند. طراحان پل با مطالعه و بررسي شكست هاي گذشته حرفه ي خود را بدرستي آموخته اند. آنان آهن را به چوب عوض كردند و سپس فولاد را جايگزين آهن كردند. بعد ها از بتون بطور گسترده در پلها بهره گرفتند. هر كدام از مواد و مصالح جديد و يا تكنيك هاي طراحي, ثمره درسهايي است كه در گذشته آموخته اند. با دانستن نيروي گشتاوري, تشديد و آيروديناميك    ( بعد از چند شكست بزرگ ) طراحي هاي بهتر نيز شكل گرفت.تا آنجاكه توانستند بر مسئله آب و هوا غلبه كنند. تعداد شكست هاي مرتبط با آب و هوا و شرايط جوي بسيار فراتر از تعداد شكست ها در زمينه طراحي بوده است. اين شكست ها به ما آموخته است كه همواره به دنبال راه حل بهتري باشيم.

منابع و مراجع : 

  www.Howstuffworks.com          www.PBS.org

www.Civeng.carleton.ca          www.hsba.go.jp   

 

خصوصيات بتن سبك

خصوصيات بتن سبك

بتن سبك ماده اي است با تركيبات جديد و فوق العاده سبك و مقاوم .

مواد تشكيل دهنده بتن سبك عبارت است از ورموكوليت، پرليت، سنگ بازالت و سيمان تيپ 2 و ...

در اين بتن همانند بتنهاي عادي ، از ماسه استفاده نمي شود.

عدم وجود ماسه باعث سبك و همگن شدن ساختار بتن گرديده و باعث مي شود كه مواد تشكيل دهنده كه تقريبا" از يك خانواده مي باشند و بهتر همديگر را جذب كنند .

ساختمان اين بتن متخلخل بوده و اين مسئله پارامتر بسيار موثري است. چون تخلخل موجود در بتن باعث مقاوم شدن در برابر زلزله و عايق شدن در برابر صدا ، گرما و سرما مي گردد .

تركيبات اين بتن به گونه اي عمل مي كند كه حالت ضد رطوبت به خود گرفته و به مانند بتن معمولي كه جذب آب دارد عمل نكرده و آب را از خود دفع مي كند .

اين بتن تحت فشار مستقيم (پرس) ساخته مي شود .

بدليل شكل گيري بتن در فشار، ساختار آن دارا ي يكپارچگي قابل قبولي است .

بتن سبك در قالبهاي طراحي شده توسط متخصصين ، بصورت يكپارچه ريخته مي شود .

بدليل يكپارچگي در نوع ساختمان بتن ، قطعه توليدي از استحكام بالايي برخوردار شده و مقاومت بالايي نيز در برابر زلزله از خود نشان خواهد داد .

براي تقويت اين بتن از يك يا چند لايه شبكه فلزي در داخل بتن استفاده شده كه اين حالت همانند مسلح كردن بتن معمولي بوسيله ميلگرد مي باشد .

هزينه توليد اين نوع بتن از ديگر مواد ساختماني به نسبت ويژگي آن پايينتر است.

زمان بسيار كمتري جهت توليد ديوار هاي بتني سبك يا قطعات ديگر لازم است .

پرت مواد اوليه جهت توليد بتن سبك بسيار كمتر از بتن معمولي است. چون تمام مراحل توليد در محل مشخصي صورت گرفته و جهت توليد پروسه اي طراحي گرديده است .

بدليل طراحي كليه مراحل توليد و وجود نظارت بر تمامي اين مراحل ماده توليدي داراي استاندارد خاصي تعريف شده است . (مهندسي ساز)

خريد مصالح بطور عمده صورت مي گيرد و هزينه كمتري براي سازنده در بر خواهد داشت و در نهايت خانه پيش ساخته با قيمت پائين تري عرضه مي گردد .

قطعات توليدي در كارخانه از آزمايشات كنترل كيفيت گذر كرده و در صورت تائيد به بازار مصرف
عرضه مي گردد .

بتن سبك مسطح بوده كه مي توان با يك ماستيك كاري ساده بر روي آن رنگ آميزي كرد.

مهدي ضرابي ، http://www.hamkelasy.com

مصرف انرژی ....

مصرف انرژی و ساختمان های اداری

 انرژي كه براي گرمايش، سرمايش، روشنايي فضاي كاري و خانه ها مصرف مي شود، حدود يك سوم مصرف انرژي در ايالات متحده امريكا را تشكيل مي دهد. خانه ها و فضاهاي كاري، با اين كه بزرگ ترين مصرف كنندگان انرژي در اين كشور هستند، قرار است بيشترين كاهش در مصرف انرژي را نيز به نام خود ثبت نمايند. برنامه هايي مانند Energy Star و «راهبري در طراحي زيست محيطي و انرژي (LEED)»، كاهش مصرف انرژي را از جنبه هاي سبز و پايايي ساختمان مورد هدف قرار داده اند. ANSI/ASHRAE/IESNA Standard 90.1 با نام «استاندارد انرژي براي ساختمان ها به استثناي ساختمان هاي كوچك مسكوني» و همچنين دستورالعمل هاي انرژي ايالتي، استانداردها و قواعد محرك اين حركت به شمار مي آيند. افزايش هزينه هاي انرژي نيز، اين حركت را از نظر جنبه هاي اقتصادي آن تسريع مي نمايد. بنابراين انتظار مي رود نتايج خوبي از اين برنامه ها حاصل گردد. در طول پانزده سال گذشته، تقاضاي برق مورد نياز براي روشنايي فضاهاي تجاري به نصف كاهش يافته است. استفاده از روشنايي روز، چراغ هاي كم نور شونده، حسگرهاي حضور افراد و غيره، توانسته اند اين كاهش قابل توجه را ايجاد نمايند. مصرف انرژي رايانه ها، نمايشگرها، دستگاه هاي كپي، فكس و ديگر لوازم اداري نيز كاهش چشم گيري يافته است. كاهشي چهل تا شصت درصدي نيز در ميانگين بارهاي سرمايش داخلي به چشم مي خورد. به عنوان مثال، بازسازي يك ساختمان اداري با مساحت 10000 فوت مربع با سن ده سال با به كارگيري تجهيزات روشنايي و اداري جديد، مي تواند 20 كيلووات از بار الكتريكي اوج و بيش از 5/5 تن بار تهويه مطبوع را كاهش دهد. مسلم است كه اين صرفه جويي هاي انرژي با گذشت زمان بيشتر مصرف انرژي را نيز به نام خود ثبت نمايند. اما عدم ارزيابي تاثيراتي كه بر روي سيستم هاي تهويه مطبوع رخ خواهند داد، مي تواند منجر به بروز مشكلاتي در زمينه ي آسايش ساكنين و كيفيت هواي داخلي ساختمان گردد. قواعد سرانگشتي كه براي دهه هاي متمادي تقريبا ثابت باقي مانده بودند، به نظر مي رسد كه ديگر صحت گذشته را از دست داده اند. در واقع، آنچه كه ممكن از نظر صرفه جويي در انرژي بسيار ايده آل به نظر برسد، شايد سيستم تهويه مطبوع ساختمان را تبديل به دستگاه توليد شكايات ساكنين نموده و در برخي موارد، كابوسي واقعي در مورد كيفيت هواي داخلي به شمار تهويه مطبوع ساختمان را تبديل به دستگاه توليد شكايات ساكنين نموده و در برخي موارد، كابوسي واقعي در مورد كيفيت هواي داخل آيد. تغيير الگوي مصرف داخلي بارهاي موجود در فضاي داخلي از قبيل روشنايي، تجهيزات و ساكنين، با پيدايش دفاتر كاري باز تا حدودي تغيير كرده اند. سطوح روشنايي در اين اماكن كمتر شده است (كه البته به دليل الزامات موجود در دستورالعمل هاي جديد است) ولي بار مصرف انرژي الكتريكي توسط دستگاه هاي جديد اداري تا حدودي افزايش يافته است. چگالي متوسط افراد حاضر در محل تقريبا بدون تغيير باقي مانده است.گرماي محسوس به ازاي هر نفر به ميزان 250 Btuh در اين محل، معادل w 73/0 بر هر فوت مربع تغيير باقي مانده است. بر روي سيستم هاي سرمايشي مي باشد. در اواسط دهه ي 1980، لامپ هاي داراي چگالي 2/2 تا 5/2 وات به ازاي فوت مربع، معمول بودند. استارت هاي الكترونيكي لامپ هاي فلوئورسنت نسبت به استارت هاي مغناطيسي داراي مزيت هاي زيادي هستند لامپ هاي چهل واتي T12 جاي خود را به لامپ هاي 34 واتي T8 و سپس لامپ هاي T5 داده اند. ميزان روشنايي در صفحات رايانه اي كاهش پيدا كرده و استفاده از روشنايي مستقيم/ غيرمستقيم با انرژي پايين، تبديل به روشي استاندارد شده است. برخي از دستورالعمل هاي انرژي در حال حاضر ميزان روشنايي در ساختمان هاي اداري را به 2/1 وات به ازاي هر فوت مربع محدود مي نمايند. طراحي دقيق (چراغ ها، طرح مبلمان، انتخاب رنگ ها و غيره، اين امكان را ايجاد مي كند كه بدون اين كه كيفيت روشنايي از دست رفته و يا هزينه هاي بالايي تحميل شود، مقدار 1.0w به ازاي هر فوت مربع به راحتي به دست آيد. برخي از مالكان ساختمان در حال كار بر روي روش هايي براي كاهش بار روشنايي ساختمانهايشان تا ميزان 0.5w در هر فوت مربع مي باشند. هر چند بار روشنايي پايين آمده است، اما استفاده از تجهيزات اداري به مراتب نسبت به گذشته افزايش داشته است. تعداد دستگاه هاي كپي، فكس، اسكنر، رايانه هاي شخصي و چاپگرها طي سال هاي اخير افزايش قابل توجهي نشان مي دهد. حتما به ياد داريد كه قبلا رايانه هاي معدودي در هر شركت وجود داشت، ولي حالا روي هر ميز يك رايانه وجود دارد. به همين قياس، قبلا از يك يا دو چاپگر مشترك در شركت ها استفاده مي شد، اما حالا تقريبا براي هر اتاق، حداقل يك چاپگر در نظر گرفته شده است. بار تجهيزات دفتري از 0.75 تا 1.0w به ازاي هر فوت مربع، به 1.5 تا 2.0w در هر فوت مربع افزايش يافته است.چاپگرهاي ليزري و همچنين دستگاه هاي كپي كوچك، دراين اواخر قيمت هاي بسيار مناسبي پيدا كرده اند. حتا بسياري از دستگاه هاي فكس نيز به صورت ليزري درآمده اند. نمايشگرهاي رايانه اي، از نوع تك رنگ سبز 12 اينچي به حداقل 17 اينچ رنگي ارتقا يافته و به همين دليل برق مصرفي اين نمايشگرها به مراب بالاتر رفته است. تحقيقات انجام شده نشان داده است كه تا سال 1994، نمايشگرهاي رايانه اي بيشترين انرژي كاركرد رايانه ها را تشكيل مي دهند. اين تحقيقات همچنين نشان داده است كه اطلاعات موجود بر روي برچسب مشخصات تجهيزات اداري، بسيار بالاتر از مصرف انرژي واقعي آن هاست. هر چند چگالي تجهيزات اداري در چند سال گذشته حدود 1.4 تا 1.8w بر فوت بوده است، اما اين مقدار در حال كاهش يافتن است. بهبودهاي صورت گرفته در مواردي مانند حالت آماده به كار (stand-by)، به خصوص حالات صرفه جويي كننده در انرژي، به اين مساله كمك زيادي نموده اند. تجهيزاتي كه داراي مشخصه ي Energy Star هستند، تبديل به تجهيزات استاندارد شده اند. استفاده از تجهيزات به صورت شبكه نيز در كاهش بارهاي مضاعف نقش بسزايي دارد. دستگاه هاي جديدي كه نقش دستگاه كپي، اسكنر، فكس و چاپگر را به طور همزمان بازي مي كنند، بسيار رايج شده اند. تونرهاي جديد دستگاه كپي، نياز به حرارت كمتري براي نشستن بر روي سطح كاغذ دارند. اين دستگاه هاي جديد، در عين اين كه فضايي نصف نفضاي تجهيزات ده سال گذشته اشغال مي كنند، مصرف انرژي بسيار كمتري نيز پيدا كرده اند. در حال حاضر، حداكثر چگالي تجهيزات به سمت 1.0w بر فوت مربع پيش مي رود و بزرگ ترين تغييري كه در اين رابطه قابل ذكر است، پيدايش نمايگرهاي كريستال مايع (LCD) است. اين نمايشگرها، مصرف برق بين 35 تا 50 وات دارند، در حالي كه نمايشگرهاي اشعه كاتدي (CRT) معمولي با همان اندازه، بين 120 تا 150 وات مصرف دارند. با پايين تر آمدن قيمت اين نمايشگرها، به نظر مي رسد كه در آينده به صورت نمايشگرهاي استاندارد در فضاهاي اداري و همچنين خانگي مطرح شوند  .

http://www.hamkelasy.com